Evaluation of Antimicrobial Property and Phytochemicals of Local Phyllanthus niruri Plant
Main Article Content
Abstract
Introduction: Employing natural plants as antibacterial agents is one strategy for combating the challenges of drug-re sistant microorganisms. This research examines the antibacterial activity of methanolic Phyllanthus niruri (P. niruri) plant extract against Propionibacterium acnes (P. acnes), Staphylococcus epidermidis (S. epidermidis), Streptococcus mutans (S. mutans), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), as well as its phytochemical components. Materials and methods: The antibacterial activity was evaluated utilising agar well diffusion, broth microdilution, and the streaking technique. The phytochemical compounds were identified via qualitative testing. Results: Antimicrobial susceptibility testing (AST) revealed that the mean inhibition zone ranged between 48.00 mm and 9.33 mm. P. acnes had the highest level of inhibition (48.00±1.00 mm), whereas E. coli had the lowest (9.33±0.58 mm). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) sug gested a concentration range between 1.95 mg/ml and 125 mg/ml. The extract’s antibacterial activity indicated that gram-positive bacteria were more sensitive than gram-negative bacteria. Additionally, the plant extract contained alkaloids, flavonoids, glycosides, phenolics, tannins, saponins, and steroids. Conclusion: The findings of this inves tigation indicate that P. niruri extract might serve as a source of antibacterial agent in the development of alternative antibiotic medication.
Downloads
Article Details
References
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-655. https://doi.org/10.1016/ S0140-6736(21)02724-0.
Hou J, Long X, Wang X, Li L, Mao D, Luo Y, et al. Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption. J Hazard Mater. 2023; 442:130042. DOI: 10.1016/j.jhazmat.2022.130042.
World Health Organization. Report signals increasing resistance to antibiotics in bacterial infections in humans and need for better data. Geneva; 2022.
Naeemmudeen NM, Mohd Ghazali NAN, Bahari H, Ibrahim R, Samsudin AD, Jasni AS. Trends in antimicrobial resistance in Malaysia. Med J Malaysia. 2021;76(5):698-705. PMID: 34508377.
Parama A, Shaheda A, Maruf AM, Ruhul AM. Evaluation of antibiotic resistance patterns in clinical isolates of Klebsiella pneumoniae in Bangladesh. Biosafety and Health. 2021;3(6):301-306. https://doi.org/10.1016/ j.bsheal.2021.11.001
Ballén V, Gabasa Y, Ratia C, Ortega R, Tejero M, Soto S. Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Front Cell Infect Microbiol. 2021; 11:738223. https:/doi.org/10.3389/ fcimb.2021.738223.
Mediani A, Abas F, Maulidiani M, Khatib A, Tan CP, Ismail IS, et al. Characterisation of metabolite profile in Phyllanthus niruri and correlation with bioactivity elucidated by nuclear magnetic resonance based metabolomics. Molecules. 2017;22(6):902. doi: 10.3390/molecules22060902.
Obianime A, Uche F. The Phytochemical constituents and the effects of methanol extracts of Phyllanthus amarus leaves (kidney stone plant) on the hormonal parameters of male guinea pigs. J Appl Sci Environ Manag. 2010;13(1). DOI:10.4314/ jasem.v13i1.55250.
Nishiura JL, Campos AH, Boim MA, Heilberg IP, Schor N. Phyllanthus niruri normalises elevated urinary calcium levels in calcium stone forming (CSF) patients. Urol Res. 2004;32(5):362–6. DOI: 10.1007/s00240-004-0432-8.
Bagalkotkar G, Sagineedu SR, Saad MS, Stanslas J. Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: a review. J Pharm Pharmacol. 2006;58(12):1559-70. DOI: 10.1211/jpp.58.12.0001.
Igwe CU, Nwaogu LA, Ujuwondu CO. Assessment of the hepatic effects, phytochemical and proximate compositions of Phyllanthus amarus. African J Biotechnol. 2007;6(6):728-31.
Méril-Mamert V, Ponce-Mora A, Sylvestre M, Lawrence G, Bejarano E, Cebrián-Torrejón G. Antidiabetic potential of plants from the Caribbean basin. Plants (Basel). 2022;11(10):1360. https:// doi.org/10.3390/plants11101360.
Nivetha A, Sakthivel C, Rajagopal G, Nandhabala S, Hemalatha J, Senthamil C, et al. A novel approach of Phyllanthus niruri supported Ag-Cu-Co for antioxidant, antibacterial, larvicidal and photodegradation applications. Surfaces and Interfaces. 2022; 35:102388. https:// doi.org/10.1016/j.surfin.2022.102388.
Maia FC, Wijesinghe GK, Barbosa JP, Feiria SNB de, Oliveira TR, Boni GC, et al. Anticandidal activity of hydroalcoholic extract of Phyllanthus niruri L. (Stone-Breaker). Braz arch biol technol. 2022;65. https://doi.org/10.1590/1678-4324-2022210539.
Marami LM, Dilba GM, Babele DA, Sarba EJ, Gizaw A, Bune WM, et al. Phytochemical screening and in-vitro evaluation of antibacterial activities of Echinops amplexicaulis, Ruta chalepensis and Salix subserrata against selected pathogenic bacterial strains in West Shewa zone. Ethiopia. J Exp Pharmacol. 2021;13:511–20 DOI: 10.2147/ JEP.S305936.
Usman H, Abdulrahman F, Usman A. Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). African J Tradit Complement Altern Med. 2009;6(3):289–95. doi: 10.4314/ajtcam.v6i3.57178.
Clinical and Laboratory Standards Institute. CLSI M100 Performance Standards for Antimicrobial Susceptibility Testing, 30th Ed. Vol. United States: CLSI; 2021.
McLorinan GC, Glenn JV, McMullan MG, Patrick S. Propionibacterium acnes wound contamination at the time of spinal surgery. Clin Orthop Relat Res. 2005;(437):67–73. doi:10.1097/00003086-200508000-00012.
Alharbi NS, Khaled JM, Kadaikunnan S, Alobaidi AS, Sharafaddin AH, Alyahya SA, et al. Prevalence of Escherichia coli strains resistance to antibiotics in wound infections and raw milk. Saudi J Biol Sci. 2019;26(7):1557–62. 10.1016/j.sjbs.2018.11.016.
Kojima A, Nakano K, Wada K, Takahashi H, Katayama K, Yoneda M, et al. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis. Sci Rep. 2012;2:332. doi: 10.1038/srep00332.
Liu S, Long Q, Xu Y, Wang J, Xu Z, Wang L, et al. Assessment of antimicrobial and wound healing effects of Brevinin-2Ta against the bacterium Klebsiella pneumoniae in dermally-wounded rats. Oncotarget. 2017;8(67):111369–85. doi: 10.18632/oncotarget.22797.
Méric G, Mageiros L, Pensar J, Laabei M, Yahara K, Pascoe B, et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat Commun. 2018;9(1):5034. https://doi.org/10.1038/s41467-018-07368-7.
Zhu T, Zhu W, Wang Q, He L, Wu W, Liu J, et al. Antibiotic susceptibility of Propionibacterium acnes isolated from patients with acne in a public hospital in Southwest China: prospective cross-sectional study. BMJ Open. 2019;9(2):022938. doi: 10.1136/bmjopen-2018-022938.
Chabi R, Momtaz H. Virulence factors and antibiotic resistance properties of the Staphylococcus epidermidis strains isolated from hospital infections in Ahvaz, Iran. Trop Med Health. 2019;47:56. https://doi.org/10.1186/s41182-019-0180-7.
Jafri H, Khan MSA, Ahmad I. In vitro efficacy of eugenol in inhibiting single and mixed-biofilms of drug-resistant strains of Candida albicans and Streptococcus mutans. Phytomedicine. 2019;54:206–13. DOI: 10.1016/j.phymed.2018.10.005.
Lyimo B, Buza J, Subbiah M, Smith W, Call DR. Comparison of antibiotic resistant Escherichia coli obtained from drinking water sources in northern Tanzania: a cross-sectional study. BMC Microbiol. 2016;16(1):254. https://doi.org/10.1186/s12866-016-0870-9.
Nirwati H, Sinanjung K, Fahrunissa F, Wijaya F, Napitupulu S, Hati VP, et al. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019;13:20. doi: 10.1186/s12919-019-0176-7.
Zhou L, Guo X, Bi J, Yi J, Chen Q, Wu X, Zhou M. Drying of garlic slices (Allium Sativum L.) and its effect on thiosulfinates, total phenolic compounds and antioxidant activity during infrared drying. J Food Process Preserv. 2016;41(1), e12734. DOI:10.1111/jfpp.12734.
Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 2018;13:20. https://doi.org/10.1186/s13020-018-0177-x.
Ahmad I, Sabah A, Anwar Z, Arif A, Arsalan A, Qadeer K. Effect of solvent polarity on the extraction of components of pharmaceutical plastic containers. Pak J Pharm Sci. 2017;30:247–52.
Ibrahim D, Hong LS, Kuppan N. Antimicrobial activity of crude methanolic extract from Phyllanthus niruri. Nat Prod Commun. 2013;8(4):493-6. PMID: 23738462.
Bacon K, Boyer R, Denbow C, O’Keefe S, Neilson A, Williams R. Evaluation of different solvents to extract antibacterial compounds from jalapeño peppers. Food Sci Nutr. 2016;5(3):497-503. DOI: 10.1002/fsn3.423.
Ibrahim N, Kebede A. In vitro antibacterial activities of methanol and aqueous leave extracts of selected medicinal plants against human pathogenic bacteria. Saudi J Biol Sci. 2020;27(9):2261-2268. doi: 10.1016/j.sjbs.2020.06.047.
Jimenez-Garcia SN, Vazquez-Cruz MA, Garcia-Mier L, Contreras-Medina LM, Guevara-González RG, Garcia-Trejo JF, et al. Phytochemical and Pharmacological Properties of Secondary Metabolites in Berries. In: Holban AM, Grumezescu AMBT-TF, editors. Handbook of Food Bioengineering. Academic Press; 2018. DOI:10.1016/B978-0-12-811517-6.00013-1.
Mostofa R, Ahmed S, Begum MM, Sohanur Rahman M, Begum T, Ahmed SU, et al. Evaluation of anti-inflammatory and gastric anti-ulcer activity of Phyllanthus niruri L. (Euphorbiaceae) leaves in experimental rats. BMC Complement Altern Med. 2017;17(1):267. DOI: 10.1186/s12906-017-1771-7.
Jian-Ling J, Guo-Qiang H, Zhen M, Gao P-J. Antibacterial Mechanisms of Berberine and Reasons for Little Resistance of Bacteria. Chinese Herb Med. 2010;3(1):27–35. DOI:10.3969/j.issn.1674-6384.2011.01.007.
Yu H, Wang Y, Wang X, Guo J , Wang H, Zhang H, et al. Jatrorrhizine suppresses the antimicrobialresistance of methicillin-resistant Staphylococcus aureus. Exp Ther Med. 2019;18(5):3715-22. doi: 10.3892/etm.2019.8034.
Teelucksingh T, Thompson LK, Cox G. The evolutionary conservation of Escherichia coli drug efflux pumps supports physiological functions. J Bacteriol. 2020;202(22). doi: 10.1128/JB.00367-20
Matsumoto Y, Kaihatsu K, Nishino K, Ogawa M, Kato N, Yamaguchi A. Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate. Front Microbiol. 2012;3:53. doi: 10.3389/fmicb.2012.00053.
Tagousop CN, Tamokou JD, Ekom SE, Ngnokam D, Voutquenne NL. Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med. 2018;18(1):252. https://doi.org/10.1186/s12906-018-2321-7.
Liu XL, Xu YJ, Go ML. Functionalised chalcones with basic functionalities have antibacterial activity against drug sensitive Staphylococcus aureus. Eur J Med Chem. 2008;43(8):1681-7. DOI: 10.1016/j.ejmech.2007.10.007.
Dong S, Yang X, Zhao L, Zhang F, Hou Z, Xue P. Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind Crops Prod. 2020;149:112350. DOI:10.1016/j.indcrop.2020.112350.
Savage PB, Li C, Taotafa U, Ding B, Guan Q. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol Lett. 2002;217(1):1–7. DOI: 10.1111/j.1574-6968.2002.tb11448.x.
Hull Vance S, Tucci M, Benghuzzi H. Evaluation of the antimicrobial efficacy of green tea extract (egcg) against Streptococcus pyogenes in vitro. Biomed Sci Instrum. 2011;47:177-82. PMID: 21525617.
Sunitha J, Krishna S, Ananthalakshmi R, Jeeva JS, Girija AS, Jeddy N. Antimicrobial Effect of Leaves of Phyllanthus niruri and Solanum nigrum on Caries Causing Bacteria: An In vitro Study. J Clin Diagn Res. 2017 Jun;11(6). doi: 10.7860/JCDR/2017/23602.10066.
Singh MP, Chand V. Antibacterial potential of different extract of Aleuritopteris bicolor in Doon Valley, Uttarakhand. Creat Res J. 2020; 8(12):2320-2882
Keepers TR, Gomez M, Celeri C, Nichols WW, Krause KM. Bactericidal activity, absence of serum effect, and time-kill kinetics of ceftazidime-avibactam against β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(9):5297–305. doi: 10.1128/AAC.02894-14.
Vasconcelos de Andrade E, Dupont S, Beney L, Hoskin R, Pedrini M. Osmoporation is a versatile technique to encapsulate fisetin using the probiotic bacteria Lactobacillus acidophilus. Appl Microbiol Biotechnol. 2022;106:1-14. doi: 10.1007/s00253-021-11735-8.
Wang J, Xue J, Dong X, Yu Q, Baker SN, Wang M, et al. Antimicrobial properties of benzalkonium chloride derived polymerisable deep eutectic solvent. Int J Pharm. 2020;575:119005. doi: 10.1016/j.ijpharm.2019.119005.