Cytotoxicity, Proliferation and Migration Effects of 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) on Human Liver Cancer, HepG2 Cells

Main Article Content

Muhammad Aminuddin Mohd Shafiee
Sharifah Sakinah Syed Alwi
Nur ‘Aqilah ‘Inani Hanapi
Marwah Salaebing
Zulkefley Othman
Armania Nurdin

Abstract

Introduction: Natural bioactive substances have become increasingly noticeable for their capability to eliminate and counteract cancer throughout time. Curcumin, a bioactive compound derived from the rhizomes of turmeric, is well known for its therapeutic effect in inducing anti-inflammatory, anti-migration, and anti-proliferation activities. However, curcumin encounters several limitations that prevent it from reaching its maximum capabilities. One of the curcuminoid analogues, 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC), was synthesized by removing the unstable β-diketone moiety and changing into double bonds while retaining the hydroxyl group to improve the curcumin’s bioavailability. It is aims to investigate the cytotoxicity of BHMC especially on the proliferation and migration effects towards human liver cancer, HepG2 cells. Methods: MTT assay was performed to determine the cytotoxicity of BHMC and curcumin on HepG2 and Hs27 cells. Next, Hoechst 33342 and Propidium Iodide staining were executed to observe the morphological changes on HepG2 cells treated with BHMC and curcumin. Further analysis on the migration rate of HepG2 cells upon treatment with BHMC and curcumin was measured using scratch assay. Results: At lower concentration, BHMC demonstrated approximately 3-7 times higher toxicity effect towards HepG2 cells compared to curcumin. BHMC also specifically targets HepG2 cells with a selectivity index of up to 6 units which clearly demonstrate its cytotoxic selectivity towards Hs27 cells. Further examination reveals that BHMC induces cytotoxicity via late-stage apoptosis. BHMC also enhanced the inhibition of the migration effects by 4.2, 7.2, and 7.6% throughout incubation period compared to the untreated and curcumin. Conclusion: Despite the pronounced toxicity of BHMC on HepG2 cells, BHMC was demonstrated more selective cytotoxic on Hs27.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mohd Shafiee, M. A., Syed Alwi, S. S., Hanapi, N. ‘Aqilah ‘Inani, Salaebing, M., Othman, Z., & Nurdin, A. (2024). Cytotoxicity, Proliferation and Migration Effects of 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) on Human Liver Cancer, HepG2 Cells. Malaysian Journal of Medicine and Health Sciences, 20(3), 174–185. https://doi.org/10.47836/mjmhs.20.3.24
Section
Original Articles

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660

Raihan R, Azzeri A, Shabaruddin FH, Mohamed R. Hepatocellular Carcinoma in Malaysia and Its Changing Trend. Euroasian J Hepato-Gastroenterology [Internet]. 2018 Jun 1 [cited 2023 Aug 15];8(1):54–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024046/

GLOBOCAN. Globocan 2020 International Agency for Research on Cancer (IARC) [Internet]. 2020. Available from: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx

Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta - Rev Cancer. 2020;1873(1):188314. doi: 10.1016/j.bbcan.2019.188314

Syed Alwi SS, Zahari S, Haron AS, Alexander HR. Cytotoxic Effect of 2,6-bis(4-Hydroxy-3-Methoxybenzylidene) cyclohexanone (BHMC) and Curcumin on Human Liver Cancer Cells, HepG2. Malaysian J Med Heal Sci [Internet]. 2019 [cited 2020 Aug 10];15(July):44–50. Available from: https://medic.upm.edu.my/upload/dokumen/2019070210005107_MJMHS_SP2_2019.pdf

Aggrawal BB, Surh YJ, Shishodia S. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. New York: Springer New York; 2007. doi: 10.1007/978-0-387-46401-5

Shanmugam MK, Rane G, Kanchi MM, Arfuso F, Chinnathambi A, Zayed ME, et al. The multifaceted role of curcumin in cancer prevention and treatment. Mol. 2015;20(2):2728-2769. doi: 10.3390/molecules20022728

Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol Adv. 2014;32(6):1053-1064. doi: 10.1016/j.biotechadv.2014.04.004

Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20(5):1033. doi: 10.3390/ijms20051033

Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. Curcumin May (Not) Defy Science. ACS Med Chem Lett. 2017;8(5):467–470. doi: 10.1021/acsmedchemlett.7b00139

Dias DA, Urban S, Roessner U. A Historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303–336. doi: 10.3390/metabo2020303

Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013;15(1):195–218. doi: 10.1208/s12248-012-9432-8

Tham CL, Lam KW, Rajajendram R, Cheah YK, Sulaiman MR, Lajis NH, et al. The effects of a synthetic curcuminoid analogue, 2,6-bis-(4-hydroxyl-3- methoxybenzylidine)cyclohexanone on proinflammatory signaling pathways and CLP-induced lethal sepsis in mice. Eur J Pharmacol. 2011;652(1–3):136–144. doi: 10.1016/j.ejphar.2010.10.092

Tham CL, Yeoh SY, Ong CH, Harith HH, Israf DA. A Synthetic Curcuminoid Analogue, 2,6-Bis-4-(Hydroxyl-3-Methoxybenzylidine)-Cyclohexanone (BHMC) Ameliorates Acute Airway Inflammation of Allergic Asthma in Ovalbumin-Sensitized Mice. Mediators Inflamm. 2021;2021:1–10. doi: 10.1155/2021/9725903

Razak NA, Akhtar MN, Abu N, Ho WY, Tan SW, Zareen S, et al. In vivo anti-tumor effect of curcumin derivative (2 E,6 E)-2,6-bis(4-hydroxy-3-methoxybenzylidene)cyclohexanone (BHMC) on 4T1 breast cancer cells. RSC Adv. 2017;7(57):36185–36192. doi: 10.1039/c7ra06580a

American Type Culture Collection (ATCC). Hep G2 [HEPG2] - HB-8065 | ATCC [Internet]. American Type Culture Collection. 2022 [cited 2022 Dec 3]. Available from: https://www.atcc.org/products/hb-8065

American Type Culture Collection (ATCC). Hs27 - CRL-1634 | ATCC [Internet]. American Type Culture Collection. 2022 [cited 2022 Dec 3]. Available from: https://www.atcc.org/products/crl-1634#product-permits

Azmy NM, Haron AS, Alwi SSS. Thymoquinone-loaded nanostructured lipid carrier reduces proliferation of human liver cancer cells, HepG2. Malaysian J Med Heal Sci [Internet]. 2019 [cited 2022 Nov 19];15(July):38–43. Available form: https://medic.upm.edu.my/upload/dokumen/2019070210002006_MJMHS_SP2_2019.pdf

Sun N, Jia Q, Tu J, Liu H. Apoptosis of hepatocellular carcinoma HepG2 cells induced by seleno-ovalbumin (Se-OVA) via mitochondrial pathway. Int J Biol Macromol. 2021;192(July):82–89. doi: 10.1016/j.ijbiomac.2021.09.178

Hezel M, Ebrahimi F, Koch M, Dehghani F. Propidium iodide staining: A new application in fluorescence microscopy for analysis of cytoarchitecture in adult and developing rodent brain. Micron. 2012 Oct 1;43(10):1031–1038. doi: 10.1016/j.micron.2012.04.006

Wang X, Zhang H, Jing H, Cui L. Highly Efficient Labeling of Human Lung Cancer Cells Using Cationic Poly-l-lysine-Assisted Magnetic Iron Oxide Nanoparticles. Nano-Micro Lett [Internet]. 2015 Oct 1 [cited 2023 Dec 21];7(4):374–384. Available from: https://link.springer.com/article/10.1007/s40820-015-0053-5

Yu KW, Yao CC, Jeng JH, Shieh HY, Chen YJ. Periostin inhibits mechanical stretch-induced apoptosis in osteoblast-like MG-63 cells. J Formos Med Assoc. 2018 Apr 1;117(4):292–300. doi: 10.1016/j.jfma.2017.12.008

Alexander HR, Syed Alwi SS, Yazan LS, Zakarial Ansar FH, Ong YS. Migration and Proliferation Effects of Thymoquinone-Loaded Nanostructured Lipid Carrier (TQ-NLC) and Thymoquinone (TQ) on in Vitro Wound Healing Models. Evid Based Complement Alternat Med. 2019;2019:1-14. doi: 10.1155/2019/9725738

Abruzzese V, Matera I, Martinelli F, Carmosino M, Koshal P, Milella L, et al. Effect of Quercetin on ABCC6 Transporter: Implication in HepG2 Migration. Int J Mol Sci. 2021;22(8):3871. doi:10.3390/ijms22083871

Lema C, Varela-Ramirez A, Aguilera RJ. Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds. Curr Cell Biochem [Internet]. 2011 [cited 2023 Dec 21];1(1):1–14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816492/

Bucevičius J, Lukinavičius G, Gerasimaite R. The use of hoechst dyes for DNA staining and beyond. Chemosensors. 2018;6(2):18. doi: 10.3390/chemosensors6020018

Masella R, Cirulli F. Curcumin: A Promising Tool to Develop Preventive and Therapeutic Strategies against Non-Communicable Diseases, Still Requiring Verification by Sound Clinical Trials. Nutrients. 2022;14(7):1401. doi: /10.3390/nu14071401

Lo Cascio F, Marzullo P, Kayed R, Palumbo Piccionello A. Curcumin as scaffold for drug discovery against neurodegenerative diseases. Biomedicines. 2021;9(2):173. doi: 10.3390/biomedicines9020173

Nebrisi E El. Neuroprotective Activities of Curcumin in Parkinson’s Disease: A Review of the Literature. Int J Mol Sci. 2021;22(20):11248. doi: 10.3390/ijms222011248

Hewlings S, Kalman D. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017;6(10):92. doi: 10.3390/foods6100092

Hu S, Xu Y, Meng L, Huang L, Sun H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp Ther Med. 2018;16(2):1266–1272. doi: 10.3892/etm.2018.6345

Tuorkey M. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv Med Appl Sci. 2014;6(4):139–146. doi: 10.1556/imas.6.2014.4.1

Tsai JR, Liu PL, Chen YH, et al. Curcumin Inhibits Non-Small Cell Lung Cancer Cells Metastasis through the Adiponectin/NF-κb/MMPs Signaling Pathway. PLoS One. 2015;10(12):e0144462.doi: 10.1371/journal.pone.0144462

Fu Z, Chen X, Guan S, Yan Y, Lin H, Hua ZC. Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF in tumor model through modulating VEGF-VEGFR2 signaling pathway. Oncotarget. 2015;6(23):19469–19482. doi: 10.18632/oncotarget.3625

Tham CL, Liew CY, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al. A synthetic curcuminoid derivative inhibits nitric oxide and proinflammatory cytokine synthesis. Eur J Pharmacol. 2010;628(1–3):247–254. doi: 10.1016/j.ejphar.2009.11.053

Nakhjiri M, Safavi M, Alipour E, Emami S, Atash AF, Jafari-Zavareh M, et al. Asymmetrical 2,6-bis(benzylidene)cyclohexanones: Synthesis, cytotoxic activity and QSAR study. Eur J Med Chem. 2012 Apr 1;50:113–23. doi: 10.1016/j.ejmech.2012.01.045

Bisht G, Rayamajhi S. ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine. 2016;3(Godište 2016):9. doi: 10.5772/63437

Mohd Shafiee MA, Muhamad Asri MA, Syed Alwi SS. Review on the in vitro cytotoxicity assessment in accordance to the international organization for standardization (ISO). Malaysian J Med Heal Sci [Internet]. 2021 [cited 2023 Apr 15];17(2):261–269. Available from: https://medic.upm.edu.my/upload/dokumen/2021040613505636_MJMHS_0637.pdf

Zamrus SNH, Akhtar MN, Yeap SK, Quah CK, Loh WS, Alitheen NB, et al. Design, synthesis and cytotoxic effects of curcuminoids on HeLa, K562, MCF-7 and MDA-MB-231 cancer cell lines. Chem Cent J. 2018;12(1):31. doi: 10.1186/s13065-018-0398-1

Yeap SK, Mohd Ali N, Akhtar MN, Razak NA, Chong ZX, Ho WY, et al. Induction of Apoptosis and Regulation of MicroRNA Expression by (2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) Treatment on MCF-7 Breast Cancer Cells. Molecules. 2021;26(5):1277. doi: 10.3390/molecules26051277

Ali NM, Yeap SK, Abu N, Lim KL, Ky H, Pauzi AZM, et al. Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells. Cancer Cell Int. 2017;17(1):1–12. doi: 10.1186/s12935-017-0400-3

Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu M. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis. 2022;27(7–8):482–508. doi: 10.1007/s10495-022-01735-y

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46.doi: 10.1158/2159-8290.CD-21-1059

Van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat Res Rev Mutat Res. 2011;728(1–2):23–34. doi: 10.1016/j.mrrev.2011.05.002

Rockwell S, Dobrucki I, Kim E, Marrison S, Vu V. Hypoxia and Radiation Therapy: Past History, Ongoing Research, and Future Promise. Curr Mol Med. 2009;9(4):442–458. doi: 10.2174/156652409788167087

Lee AYL, Fan CC, Chen YA, Cheng CW, Sung YJ, Hsu CP, et al. Curcumin Inhibits Invasiveness and Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Through Reducing Matrix Metalloproteinase 2, 9 and Modulating p53-E-Cadherin Pathway. Integr Cancer Ther. 2015;14(5):484–490. doi: 10.1177/1534735415588930

Chiu TL, Su CC. Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-κBp65 expression in breast cancer MDA-MB-231 cells. Int J Mol Med. 2009;23(4):469–475. doi: 10.3892/ijmm_00000153

Shao ZM, Shen ZZ, Liu CH, Sartippour MR, Go VL, Heber D, et al. Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer. 2002;98(2):234–240. doi: 10.1002/ijc.10183

Harun SNA, Israf DA, Tham CL, Lam KW, Cheema MS, Hashim NFM. The molecular targets and anti-invasive effects of 2,6-bis-(4-hydroxyl-3methoxybenzylidine) cyclohexanone or BHMC in MDA-MB-231 human breast cancer cells. Molecules. 2018;23(4):865. doi: 10.3390/molecules23040865