Antioxidant and Anti-Adipogenic Activities of Momordica cochinchinensis (Lour). Spreng Fruit Extracts

Main Article Content

Mohd Nazri Abdul Rahman
Amin Ismail
Azrina Azlan
Ahmad Fazli Abdul Aziz
Nor Hayati Muhammad

Abstract

Introduction: Momordica cochinchinensis (Lour) Spreng, known as gac fruit, is rich in bioactive compounds like carotenoids (β-carotene, lycopene, and lutein). This study assessed the antioxidant, cytotoxic, and anti-adipogenic properties of gac fruit extracts (GFE) from different fractions (peel, pulp, aril), using 3T3-L1 adipocytes. Method: Gac extracts’ DPPH radical scavenging was tested with 1000μg/mL dilutions. 3T3-L1 pre-adipocyte viability was measured via MTT assay. Differentiated adipocytes were treated (75, 150, 300 μg/mL) with GFE for 7 days. Inhibitory effects on adipogenesis and lipid accumulation were studied through Oil Red O staining. Triglyceride content was quantified and compared to controls. Results: IC50 values against DPPH radicals were 660μg/mL (peel), 560μg/mL (pulp), and 820μg/mL (aril). 3T3-L1 cell viability was unaffected up to 200μg/mL. However, 200μg/mL GFE decreased viability, inhibiting growth. Gac extracts effectively reduced lipid accumulation and hindered cell differentiation dose-dependently. Pulp extract notably reduced intracellular triglycerides, surpassing aril and peel effects. Conclusion: Gac fruit extract fractions (peel, pulp, and aril) efficiently inhibited adipogenesis in 3T3-L1 cells, evidenced by lowered lipid accumulation, triglyceride content, and cell viability. This study highlights gac fruit extracts’ potential therapeutic use against obesity.

Downloads

Download data is not yet available.

Article Details

How to Cite
Abdul Rahman, M. N., Ismail, A., Azlan, A., Abdul Aziz, A. F., & Muhammad, N. H. (2024). Antioxidant and Anti-Adipogenic Activities of Momordica cochinchinensis (Lour). Spreng Fruit Extracts. Malaysian Journal of Medicine and Health Sciences, 20(3), 193–202. https://doi.org/10.47836/mjmhs.20.3.26
Section
Original Articles

References

Van Chuyen H. Processing Technology of Gac Pulp and Peel. In Gac Fruit: Advances in Cultivation, Utilization, Health Benefits and Processing Technologies, 2022; pp. 143-155. GB: CABI. doi: 10.1079/9781789247329.0008

Abdulqader A, Ali F, Ismail A, Esa NM. Gac (Momordica cochinchinensis Spreng.) fruit and its potentiality and superiority in-health benefits. Journal of Contemporary Medical Sciences. 2018;4(4):179-186. doi: 10.22317/jcms.v4i4.476

Kassotis CD, Hoffman K, Völker J, et al. Reproducibility of adipogenic responses to metabolism disrupting chemicals in the 3T3-L1 pre-adipocyte model system: An interlaboratory study. Toxicology. 2021;461:152900. doi:10.1016/j.tox.2021.152900

Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep. 2021;48(1):743-761. doi:10.1007/s11033-020-06036-8

Andrews FV, Kim SM, Edwards L, Schlezinger JJ. Identifying adipogenic chemicals: Disparate effects in 3T3-L1, OP9 and primary mesenchymal multipotent cell models. Toxicol In Vitro. 2020;67:104904. doi:10.1016/j.tiv.2020.104904.

Manríquez-Núñez J, Ramos-Gómez M. Bioactive Compounds and Adipocyte Browning Phenomenon. Curr Issues Mol Biol. 2022;44(7):3039-3052. doi:10.3390/cimb44070210

Pratelli, G., Di Liberto, D., Carlisi, D., Emanuele, Pratelli G, Di Liberto D, Carlisi D, et al. Hypertrophy and ER Stress Induced by Palmitate Are Counteracted by Mango Peel and Seed Extracts in 3T3-L1 Adipocytes. Int J Mol Sci. 2023;24(6):5419. doi:10.3390/ijms24065419

Auisakchaiyoung T, Rojanakorn, T. Effect of foam-mat drying conditions on quality of dried Gac fruit (Momordica cochinchinensis) aril. International Food Research Journal 2015; 22(5): 2025-2031.

Tran XT, Parks SE, Roach PD, Golding JB, Nguyen MH. Effects of maturity on physicochemical properties of Gac fruit (Momordica cochinchinensis Spreng.). Food Sci Nutr. 2015;4(2):305-314. doi:10.1002/fsn3.291

Tai HP, Kim KP. Supercritical carbon dioxide extraction of Gac oil. The Journal of Supercritical Fluids. 2014;95:567-71. doi: 10.1016/j.supflu.2014.09.005

Nhu Quynh NT, Hai TC, Man PV, Thanh LT. Effect of wall material on the property of Gac oil spray-dried power. Journal of Nutrition & Food Sciences. 2016;6:1-4. doi: 10.4172/2155-9600.1000544

Le AV, Huynh TT, Parks SE, Nguyen MH, Roach PD. Bioactive Composition, Antioxidant Activity, and Anticancer Potential of Freeze-Dried Extracts from Defatted Gac (Momordica cochinchinensis Spreng) Seeds. Medicines (Basel). 2018;5(3):104. doi:10.3390/medicines5030104

Mai HC, Debaste F. Gac (Momordica cochinchinensis (Lour) Spreng.) Oil. Fruit Oils: Chemistry and Functionality. 2019:377-95. doi: 10.1007/978-3-030-12473-1_18

Nguyen TQ, Bui HN, Tran DD, Cizkova H. A New Approach for Stabilization of Gac Oil by Natural Antioxidants. Current Applied Science and Technology. 2021;21(3):431-44. doi: 10.14456/cast.2021.35

Maeda H, Kanno S, Kodate M, Hosokawa M, Miyashita K. Fucoxanthinol, metabolite of fucoxanthin, improves obesity-induced inflammation in adipocyte cells. Marine drugs. 2015;13(8):4799-813. doi:10.3390/md13084799

Maeda H. Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: a review. Journal of Oleo Science. 2015;64(2):125-32. doi: 10.5650/jos.ess14226

Gammone MA, D’Orazio N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar Drugs. 2015; 13(4):2196-214. doi: 10.3390/md13042196.

Grasa-López A, Miliar-García Á, Quevedo-Corona L, et al. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity. Mar Drugs. 2016;14(8):148. doi:10.3390/md14080148

Hitoe S, Shimoda H. Seaweed fucoxanthin supplementation improves obesity parameters in mild obese Japanese subjects. Functional Foods in Health and Disease. 2017 Apr 30;7(4):246-62. doi: 10.31989/ffhd.v7i4.333

Park HJ, Lee SE, Kim HB, Isaacson RE, Seo KW, Song KH. Association of obesity with serum leptin, adiponectin, and serotonin and gut microflora in beagle dogs. J Vet Intern Med. 2015;29(1):43-50. doi:10.1111/jvim.12455

Chuyen, H.V., Tran, X.T., Nguyen, M.H., Roach, P.D., Parks, SE and Golding, J.B. Yield of carotenoids, phenolic compounds and antioxidant capacity of extracts from gac peel as affected by different solvents and extraction conditions. Journal of Advanced Agricultural Technologies, 2017; 4(1): 87-91. doi: 10.18178/joaat.4.1.87-91

Abdulqader A, Ali F, Ismail A, Esa NM. Antioxidant compounds and capacities of Gac (Momordica cochinchinensis Spreng) fruits. Asian Pacific Journal of Tropical Biomedicine. 2019 Apr 1;9(4):158-67. doi: 10.4103/2221-1691.256729

Akhlaghi M, Kohanmoo A. Mechanisms of anti-obesity effects of catechins: a review. International Journal of Nutrition Sciences. 2018 Sep 1;3(3):127-32.

Williams DJ, Edwards D, Hamernig I, Jian L, James AP, Johnson SK, Tapsell LC. Vegetables containing phytochemicals with potential anti-obesity properties: A review. Food Research International. 2013 Jun 1;52(1):323-33. doi: 10.1016/j.foodres.2013.03.015

Fan X, Cui Y, Zhang R, Zhang X. Purification and identification of anti-obesity peptides derived from Spirulina platensis. Journal of Functional Foods. 2018 Aug 1;47:350-60. doi: 10.1016/j.jff.2018.05.066

Yuniarto A, Purwani H, Juanda D, Setiawan F, Kurnia I. Kumis kucing (Orthosiphon stamineus [benth.]) leaves ethanol extract as anti-obesity agent in high-fat diet-induced obese mice. Asian Journal of Pharmaceutical and Clinical Research. 2015;8(6):234-6.

Saraphanchotiwitthayaa A, Sripalakitb P. Anti-inflammatory effect of Morinda citrifolia leaf extract on macrophage RAW 264.7 cells. ScienceAsia 2015;41(1):5-11. doi: 10.2306/scienceasia1513-1874.2015.41.005

Lone J, Choi JH, Kim SW, Yun JW. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem. 2016;27:193-202. doi:10.1016/j.jnutbio.2015.09.006

Liu M., Liu H., Xie J., Xu Q., Pan C., Wang J., Wu X., Zheng M., Liu J. Anti-obesity effects of zeaxanthin on 3T3-L1 pre-adipocyte and high fat-induced obese mice. Food Funct. 2017; 8:3327–3338. doi: 10.1039/C7FO00486A.

Kim HJ, Koo KA, Park WS, et al. Anti-obesity activity of anthocyanin and carotenoid extracts from color-fleshed sweet potatoes. J Food Biochem. 2020; 18:e13438. doi:10.1111/jfbc.13438

Mounien L, Tourniaire F, Landrier JF. Anti-Obesity Effect of Carotenoids: Direct Impact on Adipose Tissue and Adipose Tissue-Driven Indirect Effects. Nutrients. 2019;11(7):1562. doi:10.3390/nu11071562

Tourniaire F, Mounien L, Landrier JF. Carotenoids as Anti-obesity Supplements. Pigments from Microalgae Handbook, 2020; 541-557. doi: 10.1007/978-3-030-50971-2

Hsieh YH, Wang SY. Lucidone from Lindera erythrocarpa Makino fruits suppresses adipogenesis in 3T3-L1 cells and attenuates obesity and consequent metabolic disorders in high-fat diet C57BL/6 mice. Phytomedicine. 2013;20(5):394-400. doi:10.1016/j.phymed.2012.11.007

Park MJ, Song JH, Shon MS, et al. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells. Prev Nutr Food Sci. 2016;21(3):227-235. doi:10.3746/pnf.2016.21.3.227

Fan M, Kim EK, Choi YJ, Tang Y, Moon SH. The Role of Momordica charantia in Resisting Obesity. Int J Environ Res Public Health. 2019;16(18):3251. doi:10.3390/ijerph16183251

Li Z, Xia A, Li S, Yang G, Jin W, Zhang M, Wang S. The pharmacological properties and therapeutic use of bitter melon (Momordica charantia L.). Current Pharmacology Reports. 2020;6:103-9. doi: 10.1007/s40495-020-00219-4

Fan M, Lee JI, Ryu YB, et al. Comparative Analysis of Metabolite Profiling of Momordica charantia Leaf and the Anti-Obesity Effect through Regulating Lipid Metabolism. Int J Environ Res Public Health. 2021;18(11):5584. doi:10.3390/ijerph18115584

Saraphanchotiwitthaya A, Sripalakit P. Jatupalathika herbal formula inhibits lipid accumulation and induces lipolysis in 3T3-L1 adipocytes. ScienceAsia. 2022 Feb 1;48(1):1. doi: 10.2306/scienceasia1513-1874.2022.002

Nallamuthu I, Jain A, Anand T. Comparative evaluation of Brassica oleracea, Ocimum basilicum, and Moringa oleifera leaf extracts on lipase inhibition and adipogenesis in 3T3-L1 adipocytes. J Food Biochem. 2022;46(7):e14158. doi:10.1111/jfbc.14158

Abdulqader A, Ali F, Ismail A, Esa NM. Gac fruit extracts ameliorate proliferation and modulate angiogenic markers of human retinal pigment epithelial cells under high glucose conditions. Asian Pacific Journal of Tropical Biomedicine. 20181;8(12):571-9. doi: 10.4103/2221-1691.248093

Wimalasiri D, Dekiwadia C, Fong SY, Piva TJ, Huynh T. Anticancer activity of Momordica cochinchinensis (red gac) aril and the impact of varietal diversity. BMC Complement Med Ther. 2020;20(1):365. doi:10.1186/s12906-020-03122-z

Choi SI, Lee JS, Lee S, Lee JH, Yang HS, Yeo J, Kim JY, Lee BY, Kang IJ, Lee OH. Radical scavenging-linked anti-adipogenic activity of Alnus firma extracts. Int J Mol Med. 2018; 41(1):119-128. doi: 10.3892/ijmm.2017.3221.