Hepatic Effects of Prolonged Oral Administration of Aqueous Extracts From Trigonella foenum-graecum (Fenugreek) Seeds Explored Through Pathology Techniques

Main Article Content

Nnaemeka Okorie
Onyekachi Ewa Ibe
Simon Imakwu Okekpa
Anthony Chukwudi Nwakpa
Dansy Daniel Agom
Iyke-Ogbo Pauline
Obi Laura Adaeze
Uche Bethel Mmesomachi
Valentine Nyirahafashimana
Ihuoma A. Obi

Abstract

Introduction: The escalating global prevalence of complementary and alternative medicine is often linked to the financial challenges of conventional healthcare in developing nations. Trigonella foenum-graecum (TFG), commonly known as Fenugreek, it is rich in proteins, lipids, fatty acids, and minerals, offering numerous health benefits. This study explores the hepatic impact of prolonged oral ingestion of an aqueous extract from Trigonella foenum-graecum seeds in Norvegicus rattus. Materials and methods: Thirty-five Norvegicus rattus weighing 150–200g were randomly assigned to five groups, with each subjected to distinct dietary regimens containing 2%, 4%, 6%, and 8% Trigonella foenum-graecum, and a control group. Liver tissues were harvested and processed, and blood samples collected through cardiac puncture for biochemical analysis, comparisons across all groups were performed for all tests using SPSS version 20, with statistical significance determined at p ≤ 0.05. Results: Trigonella foenum-graecum administration resulted in significant increases in serum ALT and AST levels, indicating potential hepatotoxicity. Lower doses exhibited reduced lipid peroxidation (MDA), while higher doses surpassed control group MDA levels, suggesting a dose-dependent response. Antioxidant enzymes (CAT, SOD, GSH, GPX) showed elevation at lower doses but declined at higher doses. Liver histological examinations revealed characteristics indicative of toxicity at higher doses. Conclusion: This study establishes the antioxidant and hepatoprotective properties of Trigonella foenum-graecum, highlighting a dose-dependent relationship. While lower doses show beneficial effects, higher doses may lead to adverse effects and liver damage. These findings contribute to understanding the dual nature of Trigonella foenum-graecum in therapeutic contexts.

Downloads

Download data is not yet available.

Article Details

How to Cite
Okorie, N., Ibe, O. E., Okekpa, S. I., Nwakpa, A. C., Agom, D. D., Pauline, I.-O., Adaeze, O. L., Mmesomachi, U. B., Nyirahafashimana, V., & Obi, I. A. (2024). Hepatic Effects of Prolonged Oral Administration of Aqueous Extracts From Trigonella foenum-graecum (Fenugreek) Seeds Explored Through Pathology Techniques. Malaysian Journal of Medicine and Health Sciences, 20(6), 208–218. https://doi.org/10.47836/mjmhs.20.6.28
Section
Original Articles

References

Ahsan MR, Islam KM, Bulbul IJ. Hepatoprotective activity of methanol extract of some medicinal plants against carbon tetrachloride-induced hepatotoxicity in rats. *Eur J Sci Res.* 2009;37:302–10.

Bodakhe SH, Ram A. Hepatoprotective properties of *Bauhinia variegata* bark extract. *Yakugaku Zasshi.* 2007;127:1503–7. [https://doi.org/10.1016/j.kjms.2014.02.003](https://doi.org/10.1016/j.kjms.2014.02.003).

Abou El-Soud NH. Antidiabetic effect of fenugreek alkaloid extract in streptozotocin-induced hyperglycemic rats. *J Appl Sci Res.* 2007;3(10):1073–83.

Mokhtari M. The effect of fenugreek (*Trigonella foenum-graecum* L.) on hormone variation of testosterone and spermatogenesis of rat. *Med Plants Mag.* 2007;7(25):12–20.

Al-Oqail MM, Farshori NN, Al-Sheddi ES, Musarrat J, Al-Khedhairy AA, Siddiqui MA. In vitro cytotoxic activity of seed oil of fenugreek against various cancer cell lines. *Asian Pac J Cancer Prev.* 2013;14(3):1829–32. [https://doi.org/10.7314/APJCP.2013.14.3.1829](https://doi.org/10.7314/APJCP.2013.14.3.1829).

Snehlata HS, Payal DR. Fenugreek (*Trigonella foenum-graecum* L.): An overview. *Int J Curr Pharm Rev Res.* 2012;2(4):169–87.

Sadeghzadeh-Ahari D, Kashi AK, Hassandokht MR, Amri A, Alizadeh KH. Assessment of drought tolerance in Iranian fenugreek landraces. *J Food Agric Environ.* 2009;7(3–4):414–9.

Mehrafarin A, Qaderi A, Rezazadeh SH, Naghdi BH, Noormohammadi GH, Zand E. Bioengineering of important secondary metabolites and metabolic pathways in fenugreek (*Trigonella foenum-graecum* L.). *J Med Plant.* 2010;9(35):1–18.

Duke JA. *Handbook of Legumes of World Economic Importance.* New York: Plenum Press; 1986. p.345. [https://doi.org/10.1007/978-1-4684-8151-8](https://doi.org/10.1007/978-1-4684-8151-8).

Okorie N. *Basic Histopathology Techniques: Instructional Manual for Staff and Students.* 1st ed. 2021;151(8):156–60.

Dey P. Tissue Microtomy: Principle and Procedure. In: *Basic and Advanced Laboratory Techniques in Histopathology and Cytology.* Singapore: Springer Nature; 2023. p.41–50. [https://doi.org/10.1007/978-981-19-6616-3_5](https://doi.org/10.1007/978-981-19-6616-3_5).

National Institutes of Health. *Guide for the Care and Use of Laboratory Animals.* Bethesda: NIH; 1985. p.85–93.

Meguro R, Asano Y, Odagiri S. Non-heme-iron histochemistry for light and electron microscopy: a historical, theoretical and technical review. *Arch Histol Cytol.* 2007;70(1):1–19. [https://doi.org/10.1679/aohc.70.1](https://doi.org/10.1679/aohc.70.1).

Drury RAB, Wallington EA. *Carleton’s Histological Technique.* 5th ed. Oxford: Oxford University Press; 1980. p.520.

Aebi H. Catalase in vitro. In: *Methods in Enzymology.* Vol. 105. New York: Academic Press; 1984. p.121–6. [https://doi.org/10.1016/S0076-6879(84)05016-3](https://doi.org/10.1016/S0076-6879%2884%2905016-3).

Nissen HP, Kreysel HW. Superoxide dismutase in human semen. *Klin Wochenschr.* 1983;61(1):63–5. [https://doi.org/10.1007/BF01484441](https://doi.org/10.1007/BF01484441).

Wallin B, Rosengren B, Shertzer HG, Camejo G. Lipoprotein oxidation and measurement of thiobarbituric acid-reacting substances formation in a single microtiter plate: its use for evaluation of antioxidants. *Anal Biochem.* 1993;208(1):10–5. [https://doi.org/10.1006/abio.1993.1002](https://doi.org/10.1006/abio.1993.1002).

Ellman GL. Tissue sulfhydryl groups. *Arch Biochem Biophys.* 1959;82(1):70–7.

Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra W. Selenium: Biochemical role as a component of glutathione peroxidase. *Science.* 1973;179(4073):588–90. [https://doi.org/10.1126/science.179.4073.588](https://doi.org/10.1126/science.179.4073.588).

Marrocco I, Altieri F, Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. *Oxid Med Cell Longev.* 2017;2017:6501046. [https://doi.org/10.1155/2017/6501046](https://doi.org/10.1155/2017/6501046).

Kumari A, Kakkar P. Lupeol prevents acetaminophen-induced in vivo hepatotoxicity by altering the Bax/Bcl-2 and oxidative stress-mediated mitochondrial signalling cascade. *Life Sci.* 2012;90(15–16):561–70. [https://doi.org/10.1016/sjbs.2014.06.005](https://doi.org/10.1016/sjbs.2014.06.005).

Olaleye MT, Amobonye AE, Komolafe K, Akinmoladun AC. Protective effects of *Parinari curatellifolia* flavonoids against acetaminophen-induced hepatic necrosis in rats. *Saudi J Biol Sci.* 2014;21(5):486–92. [https://doi.org/10.1016/j.sjbs.2014.06.005](https://doi.org/10.1016/j.sjbs.2014.06.005).

Ozcelik E, Uslu S, Erkasap N, Karimi H. Protective effect of chitosan treatment against acetaminophen-induced hepatotoxicity. *Kaohsiung J Med Sci.* 2014;30(6):286–90. [https://doi.org/10.1016/j.kjms.2014.02.003](https://doi.org/10.1016/j.kjms.2014.02.003).

Kumar P, Bhandari U. Protective effect of *Trigonella foenum-graecum* Linn. on monosodium glutamate-induced dyslipidemia and oxidative stress in rats. *Indian J Pharmacol.* 2013;45(2):136.

Al-Mashhadani FA. Effect of fenugreek seed and leaves on some hematological and biochemical parameters in CCl4-induced liver injury. *Int J Curr Microbiol Appl Sci.* 2017;6(4):2328–37.

Bernal-Reyes R, Castro-Narro G, Malé-Velázquez R, Carmona-Sánchez R, González-Huezo MS, García-Juárez I, et al. The Mexican consensus on nonalcoholic fatty liver disease. *Rev Gastroenterol Mex (Engl Ed).* 2019;84(1):69–99.

Selmi S, Alimi D, Rtibi K, Jedidi S, Grami D, Marzouki L, Hosni K, Sebai H. Gastroprotective and antioxidant properties of *Trigonella foenum-graecum* seeds aqueous extract (Fenugreek) and omeprazole against ethanol-induced peptic ulcer. *J Med Food.* 2022;25(5):513–22. [https://doi.org/10.1089/jmf.2020.0217](https://doi.org/10.1089/jmf.2020.0217).

Fathima A, Gangachannaiah S, Bose U, Chakraborty R, Se PK, Udupa PE, Yadav RSP, Monappa V. Effect of aqueous extract of *Trigonella foenum-graecum* L. seeds on acetic acid-induced ulcerative colitis in rats. *Int J Pharm Sci Res.* 2023;15(3):355. [https://doi.org/10.52711/0974-360X.2023.00355](https://doi.org/10.52711/0974-360X.2023.00355).

Yadav UC, Baquer NZ. Pharmacological effects of *Trigonella foenum-graecum* L. in health and disease. *Pharm Biol.* 2014;52(2):243–54. [https://doi.org/10.3109/13880209.2013.826247](https://doi.org/10.3109/13880209.2013.826247).

Zargar S. Protective effect of *Trigonella foenum-graecum* on thioacetamide-induced hepatotoxicity in rats. *Saudi J Biol Sci.* 2014;21(2):139–45. [https://doi.org/10.1016/j.sjbs.2013.09.002](https://doi.org/10.1016/j.sjbs.2013.09.002).

Alfarisi O, Alghamdi WA, Al-Shaer MH, Dooley KE, Peloquin CA. Rifampin vs. rifapentine: what is the preferred rifamycin for tuberculosis? *Expert Rev Clin Pharmacol.* 2017;10(10):1027–36. [https://doi.org/10.1080/17512433.2017.1366311](https://doi.org/10.1080/17512433.2017.1366311).