Evaluation of Serum Brain-derived Neurotrophic Factor (BDNF) in Ambulatory Stroke Survivors With Mild Cognitive Impairment and Normal Cognitive Functions

Main Article Content

Mohd Ariff Sharifudin
Abdulkareem Muhammad Umar
Naresh Bhaskar Raj
Aisha Ahmad Ahmad

Abstract

Introduction: This study aims to assess serum brain-derived neurotrophic factor levels in ambulating stroke patients, focusing on potential correlations with cardiovascular risk factors and overall obesity. Materials and methods: Sixty stroke patients (63.3% male, 36.7% female, mean age: 57 years) participated. Quantikine ELISA kit (SL0371Hu) was used to determine post-stroke serum brain-derived neurotrophic factor levels. Patient demographics, including body mass index, systolic, and diastolic blood pressures, were recorded and computed to assess patients' overall obesity status and blood pressure. Results: The mean serum brain-derived neurotrophic factor level was 119.25 (SD = 11.40) pg/ml. No significant effect of selected anthropometric indices and cardiovascular risk factors, including age (p = 0.493), overall obesity status (p = 0.848), systolic and diastolic blood pressures (p = 0.840 and 0.540, respectively), on the serum brain-derived neurotrophic factor. Conclusion: In ambulating stroke patients, the serum brain-derived neurotrophic factor levels were within the normal range but tended towards the lower limit. Consequently, it is crucial to develop and implement medical and rehabilitation programs specifically aimed at increasing serum brain-derived neurotrophic factor levels in post-stroke patients.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sharifudin, M. A., Umar, A. M., Bhaskar Raj, N., & Ahmad, A. A. (2024). Evaluation of Serum Brain-derived Neurotrophic Factor (BDNF) in Ambulatory Stroke Survivors With Mild Cognitive Impairment and Normal Cognitive Functions. Malaysian Journal of Medicine and Health Sciences, 20(6), 242–249. https://doi.org/10.47836/mjmhs.20.6.32
Section
Original Articles

References

Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. *Int J Mol Sci.* 2020;21(20):7609. [https://doi.org/10.3390/ijms21207609](https://doi.org/10.3390/ijms21207609).

Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics–2020 update: a report from the American Heart Association. *Circulation.* 2020;141(9):e139–e596. [https://doi.org/10.1161/CIR.0000000000000757](https://doi.org/10.1161/CIR.0000000000000757).

Bersano A, Gatti L. Pathophysiology and treatment of stroke: present status and future perspectives. *Int J Mol Sci.* 2023;24(19):14848. [https://doi.org/10.3390/ijms241914848](https://doi.org/10.3390/ijms241914848).

Hu P, Yang Q, Kong L, Hu L, Zeng L. Relationship between the anxiety/depression and care burden of the major caregiver of stroke patients. *Medicine (Baltimore).* 2018;97(40):e12638. [https://doi.org/10.1097/MD.0000000000012638](https://doi.org/10.1097/MD.0000000000012638).

Rajan B, Suman G, Pruthvish S, Radhika K. Assessment of stress among caregivers of stroke survivors: community-based study. *Int J Community Med Public Health.* 2016;4(1):211–5. [https://doi.org/10.18203/2394-6040.ijcmph20164740](https://doi.org/10.18203/2394-6040.ijcmph20164740).

Costache AD, Ignat BE, Grosu C, et al. Inflammatory pathways in overweight and obese persons as a potential mechanism for cognitive impairment and earlier onset Alzheimer’s dementia in the general population: a narrative review. *Biomedicines.* 2023;11(12):3233. [https://doi.org/10.3390/biomedicines11123233](https://doi.org/10.3390/biomedicines11123233).

McEwen BS. Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. *Eur J Pharmacol.* 2008;583(2–3):174–85. [https://doi.org/10.1016/j.ejphar.2007.11.071](https://doi.org/10.1016/j.ejphar.2007.11.071).

Lucassen PJ, Pruessner J, Sousa N, et al. Neuropathology of stress. *Acta Neuropathol.* 2014;127(1):109–35. [https://doi.org/10.1007/s00401-013-1223-5](https://doi.org/10.1007/s00401-013-1223-5).

D’souza J, Natarajan DM, Kumaran DDS. Does the environment cause changes in hemiparetic lower limb muscle activity and gait velocity during walking in stroke survivors? *J Stroke Cerebrovasc Dis.* 2020;29(10):105174. [https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105174](https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105174).

Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. *Nat Rev Neurosci.* 2003;4(4):299–309. [https://doi.org/10.1038/nrn1078](https://doi.org/10.1038/nrn1078).

Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood–brain barrier. *Neuropharmacology.* 1998;37(12):1553–61. [https://doi.org/10.1016/S0028-3908(98)00141-5](https://doi.org/10.1016/S0028-3908%2898%2900141-5).

Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophic factor in neurogenesis and neuronal function, and its involvement in brain disease pathophysiology. *Int J Mol Sci.* 2018;19(11):3650. [https://doi.org/10.3390/ijms19113650](https://doi.org/10.3390/ijms19113650).

Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. *EMBO J.* 1990;9(8):2459–64. [https://doi.org/10.1002/j.1460-2075.1990.tb07423.x](https://doi.org/10.1002/j.1460-2075.1990.tb07423.x).

Badowska-Szalewska E, Ludkiewicz B, Krawczyk R, Melka N, Moryś J. Comparison of the influence of two models of mild stress on hippocampal BDNF immunoreactivity in old-age rats. *Acta Neurobiol Exp (Wars).* 2017;77(1):68–76. [https://doi.org/10.21307/ane-2017-037](https://doi.org/10.21307/ane-2017-037).

Venezia AC, Quinlan E, Roth SM. A single bout of exercise increases hippocampal BDNF: influence of chronic exercise and noradrenaline. *Genes Brain Behav.* 2017;16(8):800–11. [https://doi.org/10.1111/gbb.12394](https://doi.org/10.1111/gbb.12394).

Markham A, Bains R, Franklin P, Spedding M. Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: how important is BDNF? *Br J Pharmacol.* 2014;171(8):2206–29. [https://doi.org/10.1111/bph.12531](https://doi.org/10.1111/bph.12531).

Fernandes BS, Steiner J, Berk M, et al. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. *Mol Psychiatry.* 2015;20(9):1108–19. [https://doi.org/10.1038/mp.2014.117](https://doi.org/10.1038/mp.2014.117).

Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and pathological brain. *Front Cell Neurosci.* 2019;13:363. [https://doi.org/10.3389/fncel.2019.00363](https://doi.org/10.3389/fncel.2019.00363).

Klein AB, Williamson R, Santini MA, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. *Int J Neuropsychopharmacol.* 2011;14(3):347–53. [https://doi.org/10.1017/S1461145710000738](https://doi.org/10.1017/S1461145710000738).

Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. *Nat Neurosci.* 2007;10(9):1089–93. [https://doi.org/10.1038/nn1971](https://doi.org/10.1038/nn1971).

Advani T, Koek W, Hensler JG. Gender differences in the enhanced vulnerability of BDNF+/− mice to mild stress. *Int J Neuropsychopharmacol.* 2009;12(5):583–8. [https://doi.org/10.1017/S1461145709000248](https://doi.org/10.1017/S1461145709000248).

Soavi C, Marušić U, Sanz JM, et al. Age-related differences in plasma BDNF levels after prolonged bed rest. *J Appl Physiol (1985).* 2016;120(10):1118–23. [https://doi.org/10.1152/japplphysiol.01111.2015](https://doi.org/10.1152/japplphysiol.01111.2015).

Zhang S, Yuan Y, Zhuang W, et al. Contributing factors and induced outcomes of psychological stress response in stroke survivors: a systematic review. *Front Neurol.* 2022;13:843055. [https://doi.org/10.3389/fneur.2022.843055](https://doi.org/10.3389/fneur.2022.843055).

Xu HB, Xu YH, He Y, et al. Decreased serum brain-derived neurotrophic factor may indicate the development of poststroke depression in acute ischemic stroke: a meta-analysis. *J Stroke Cerebrovasc Dis.* 2018;27(3):709–15. [https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.10.003](https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.10.003).

Chen HG, Wang M, Jiao AH, Tang GT, Zhu W, Zou P, et al. Research on changes in cognitive function, β-amyloid peptide and neurotrophic factor in stroke patients. *Eur Rev Med Pharmacol Sci.* 2018;22(19):6448–55. [https://doi.org/10.26355/eurrev_201810_16057](https://doi.org/10.26355/eurrev_201810_16057).

Stanne TM, Åberg ND, Nilsson S, et al. Low circulating acute brain-derived neurotrophic factor levels are associated with poor long-term functional outcome after ischemic stroke. *Stroke.* 2016;47(7):1943–5. [https://doi.org/10.1161/STROKEAHA.115.012383](https://doi.org/10.1161/STROKEAHA.115.012383).

Folstein MF, Folstein SE, McHugh PR. “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res.* 1975;12(3):189–98. [https://doi.org/10.1016/0022-3956(75)90026-6](https://doi.org/10.1016/0022-3956%2875%2990026-6).

Ariff MS, Arshad AA, Johari MH, et al. The study on range of motion of hip and knee in prayer by adult Muslim males: a preliminary report. *IIUM Med J Malays.* 2015;14(1):49–58. [https://doi.org/10.31436/imjm.v14i1.456](https://doi.org/10.31436/imjm.v14i1.456).

Baranger J, Villemain O, Goudot G, et al. The fundamental mechanisms of the Korotkoff sounds generation. *Sci Adv.* 2023;9(40):eadi4252. [https://doi.org/10.1126/sciadv.adi4252](https://doi.org/10.1126/sciadv.adi4252).

Marston KJ, Newton MJ, Brown BM, et al. Intense resistance exercise increases peripheral brain-derived neurotrophic factor. *J Sci Med Sport.* 2017;20(10):899–903. [https://doi.org/10.1016/j.jsams.2017.03.015](https://doi.org/10.1016/j.jsams.2017.03.015).

Bothwell M. Recent advances in understanding neurotrophin signaling. *F1000Res.* 2016;5:F1000 Faculty Rev–1885. [https://doi.org/10.12688/f1000research.8434.1](https://doi.org/10.12688/f1000research.8434.1).

Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors: relevance for disorders of the central nervous system. *Neurobiol Dis.* 2017;97(Pt B):80–9. [https://doi.org/10.1016/j.nbd.2016.01.021](https://doi.org/10.1016/j.nbd.2016.01.021).

Lu B. Pro-region of neurotrophins: role in synaptic modulation. *Neuron.* 2003;39(5):735–8. [https://doi.org/10.1016/S0896-6273(03)00538-5](https://doi.org/10.1016/S0896-6273%2803%2900538-5).

Teng KK, Hempstead BL. Neurotrophins and their receptors: signaling trios in complex biological systems. *Cell Mol Life Sci.* 2004;61(1):35–48. [https://doi.org/10.1007/s00018-003-3099-3](https://doi.org/10.1007/s00018-003-3099-3).

Hwang JJ, Park MH, Koh JY. Copper activates TrkB in cortical neurons in a metalloproteinase-dependent manner. *J Neurosci Res.* 2007;85(10):2160–6. [https://doi.org/10.1002/jnr.21350](https://doi.org/10.1002/jnr.21350).

Friedman WJ. Proneurotrophins, seizures, and neuronal apoptosis. *Neuroscientist.* 2010;16(3):244–52. [https://doi.org/10.1177/1073858409349903](https://doi.org/10.1177/1073858409349903).

Volosin M, Song W, Almeida RD, Kaplan DR, Hempstead BL, Friedman WJ. Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. *J Neurosci.* 2006;26(29):7756–66. [https://doi.org/10.1523/JNEUROSCI.1560-06.2006](https://doi.org/10.1523/JNEUROSCI.1560-06.2006).

McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. *Annu Rev Neurosci.* 1999;22:295–318. [https://doi.org/10.1146/annurev.neuro.22.1.295](https://doi.org/10.1146/annurev.neuro.22.1.295).

Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, Korte M. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. *J Neurosci.* 2005;25(43):9989–99. [https://doi.org/10.1523/JNEUROSCI.2492-05.2005](https://doi.org/10.1523/JNEUROSCI.2492-05.2005).

Bibel M, Hoppe E, Barde YA. Biochemical and functional interactions between neurotrophin receptors trk and p75NTR. *EMBO J.* 1999;18(3):616–22. [https://doi.org/10.1093/emboj/18.3.616](https://doi.org/10.1093/emboj/18.3.616).

Aisyah V, Subagyo S, Subadi I. Effect of aerobic exercise on brain-derived neurotrophic factor serum level in stroke subjects with cognitive function impairment. *SPMRJ.* 2020;2(2):42–8. [https://doi.org/10.20473/spmrj.v2i2.17669](https://doi.org/10.20473/spmrj.v2i2.17669).

Celik Guzel E, Bakkal E, Guzel S, et al. Can low brain-derived neurotrophic factor levels be a marker of the presence of depression in obese women? *Neuropsychiatr Dis Treat.* 2014;10(1):2079–86. [https://doi.org/10.2147/NDT.S72087](https://doi.org/10.2147/NDT.S72087).

Koizumi M, Watanabe H, Kaneko Y, et al. Impact of obesity on plasma B-type natriuretic peptide levels in Japanese community-based subjects. *Heart Vessels.* 2012;27(3):287–94. [https://doi.org/10.1007/s00380-011-0143-3](https://doi.org/10.1007/s00380-011-0143-3).

Mehra MR, Uber PA, Park MH, et al. Obesity and suppressed B-type natriuretic peptide levels in heart failure. *J Am Coll Cardiol.* 2004;43(9):1590–5. [https://doi.org/10.1016/j.jacc.2003.10.066](https://doi.org/10.1016/j.jacc.2003.10.066).

Bionda C, Bergerot C, Ardail D, Rodriguez-Lafrasse C, Rousson R. Plasma BNP and NT-proBNP assays by automated immunoanalyzers: analytical and clinical study. *Ann Clin Lab Sci.* 2006;36(3):299–306. Available from: [https://pubmed.ncbi.nlm.nih.gov/16951271](https://pubmed.ncbi.nlm.nih.gov/16951271).

Park SJ, Cho KI, Jung SJ, et al. N-terminal pro-B-type natriuretic peptide in overweight and obese patients with and without diabetes: an analysis based on body mass index and left ventricular geometry. *Korean Circ J.* 2009;39(12):538–44. [https://doi.org/10.4070/kcj.2009.39.12.538](https://doi.org/10.4070/kcj.2009.39.12.538).

Kim BH, Kim IJ, Cho KI, Kim SM, Lee HG, Kim TI. The influence of diabetes on the relationship between N-terminal pro-B-type natriuretic peptide and body mass index. *J Int Med Res.* 2010;38(5):1737–48. [https://doi.org/10.1177/147323001003800519](https://doi.org/10.1177/147323001003800519).

Krauser DG, Lloyd-Jones DM, Chae CU, et al. Effect of body mass index on natriuretic peptide levels in patients with acute congestive heart failure: a ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) substudy. *Am Heart J.* 2005;149(4):744–50. [https://doi.org/10.1016/j.ahj.2004.07.010](https://doi.org/10.1016/j.ahj.2004.07.010).

Pytka MJ, Pałasz-Borkowska A, Tarchalski JL, et al. The serum concentration of brain-derived neurotrophic factor is lower in ambulatory and clinically stable patients with more advanced systolic heart failure. *Pol Arch Intern Med.* 2022;132(10):16303. [https://doi.org/10.20452/pamw.16303](https://doi.org/10.20452/pamw.16303).