Study of Pre Storage Leucodepleted Effects on Cell Blood Count and Cytokines Level in Whole Blood During Storage
Main Article Content
Abstract
Introduction: The presence of white blood cells (WBCs) and other proteins for example, cytokines in the red blood component during storage may have an effect on cancer patients requiring blood transfusions, and leucodepletion method would have to be used. This study aimed to evaluate the residual WBCs in red cell components following leucodepleted and to determine cytokine levels during storage of red cell components. Materials and methods: A total of 350 mL of whole blood was withdrawn from 31 healthy volunteers. Half of this volume (175mL) was leucodepleted (LR) at room temperature, while the other half (175mL), was not leucodepleted and used as a control. Full blood count (FBC) and flow cytometry (FCM) with residual WBCs subsets were performed. Cytokines were measured in plasma samples collected from non LR and LR bags after 0, 10, 20, and 30 days. T-helper (Th) lymphocyte subgroups and gene expression were analysed in the non-LR samples using real-time polymerase chain reaction. Results: There was a significant difference in the mean of all FBC parameters and residual WBCs subsets between these two groups (p < 0.05). There was a significant difference in TGF-β and IFN-γ between non-LR and LR samples on day 0 to day 10. TGF-β level showed an increase up to day 30 in non-LR samples. T-bet, GATA-3, and Foxp3 gene expression were detected in non-LR samples. Conclusion: Leucodepletion demonstrated a significant effect on WBC count, TGF-β and IFN-γ levels, during blood storage.
Downloads
Article Details
References
Tsai AG, Hofmann A, Cabrales P, Intaglietta M. Perfusion vs. oxygen delivery in transfusion with “fresh” and “ old” red blood cells: The experimental evidence. Transfusion and Apheresis Science [Internet]. 2010;43(1):69–78. Available from: http://dx.doi.org/10.1016/j.transci.2010.05.011
Chang, C. C., Lee, T. C., Su, M. J., Lin, H. C., Cheng, F. Y., Chen, Y. T., Yen, T. H., & Chu, F. Y. (2017). Transfusion-associated adverse reactions (TAARs) and cytokine accumulations in the stored blood components: the impact of prestorage versus poststorage leukoreduction. Oncotarget, 9(4), 4385–4394. https://doi.org/10.18632/oncotarget.23136
Saris, A., Peyron, I., van der Meer, P. F., Stuge, T. B., Zwaginga, J. J., van Ham, S. M., & Ten Brinke, A. (2018). Storage-Induced Platelet Apoptosis Is a Potential Risk Factor for Alloimmunization Upon Platelet Transfusion. Frontiers in immunology, 9, 1251. https://doi.org/10.3389/fimmu.2018.01251
Ainley, L. I., & Hewitt, P. E. (2018). Haematology patients and the risk of transfusion transmitted infection. British journal of haematology, 180(4), 473–483. https://doi.org/10.1111/bjh.15030
Bal, S. H., Heper, Y., Kumaş, L. T., Guvenc, F., Budak, F., Göral, G., & Oral, H. B. (2018). Effect of storage period of red blood cell suspensions on helper T-cell subpopulations. Blood transfusion = Trasfusione del sangue, 16(3), 262–272. https://doi.org/10.2450/2017.0238-16
Sut, C., Tariket, S., Chou, M. L., Garraud, O., Laradi, S., Hamzeh-Cognasse, H., Seghatchian, J., Burnouf, T., & Cognasse, F. (2017). Duration of red blood cell storage and inflammatory marker generation. Blood transfusion = Trasfusione del sangue, 15(2), 145–152. https://doi.org/10.2450/2017.0343-16
Shukla, R., Patel, T., & Gupte, S. (2015). Release of cytokines in stored whole blood and red cell concentrate: Effect of leukoreduction. Asian journal of transfusion science, 9(2), 145–149. https://doi.org/10.4103/0973-6247.162708
S. U. C. Assessment of Pro-Inflammatory Cytokines Level in Stored Blood for Transfusion in Port Harcourt, Nigeria. Journal of Medical Science And clinical Research [Internet]. 2018 Oct 12;6(10). Available from: https://dx.doi.org/10.18535/jmscr/v6i10.65
Cata, J. P., Wang, H., Gottumukkala, V., Reuben, J., & Sessler, D. I. (2013). Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. British journal of anaesthesia, 110(5), 690–701. https://doi.org/10.1093/bja/aet068
Nguyen, D. P., Li, J., & Tewari, A. K. (2014). Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU international, 113(6), 986–992. https://doi.org/10.1111/bju.12452
Dutt, N., Sidhu, M., Sharma, S., Parihar, R., & Kumar, D. (2017). Effectiveness of buffy coat leucoreduced packed red blood cells in decreasing febrile non-hemolytic transfusion reactions in thalassemic patients. International Journal of Research in Medical Sciences, 5(5), 1756–1759. https://doi.org/10.18203/2320-6012.ijrms20171522
Eldesouky, N. A., Abo El Fetouh, R. M., Hafez, A. A., Gad, A., & Kamal, M. M. (2019). The expression of CD47 and its association with 2,3-DPG levels in stored leuco-reduced blood units. Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine, 26(4), 279–283. https://doi.org/10.1016/j.tracli.2019.01.004
Hart, S., Cserti-Gazdewich, C. M., & McCluskey, S. A. (2015). Red cell transfusion and the immune system. Anaesthesia, 70 Suppl 1, 38–e16. https://doi.org/10.1111/anae.12892
HAEMOVIGILANCE_REPORT_2016-2017_PDN.
Makroo, R. N., Raina, V., Bhatia, A., Gupta, R., Majid, A., Thakur, U. K., & Rosamma, N. L. (2011). Evaluation of the red cell hemolysis in packed red cells during processing and storage. Asian journal of transfusion science, 5(1), 15–17. https://doi.org/10.4103/0973-6247.75970
Nagura Y, Tsuno NH, Tanaka M, Matsuhashi M, Takahashi K. The effect of pre-storage whole-blood leukocyte reduction on cytokines/chemokines levels in autologous CPDA-1 whole blood. Transfusion and Apheresis Science [Internet]. 2013;49(2):223–30. Available from: http://dx.doi.org/10.1016/j.transci.2013.01.006
Ghezelbash B, Azarkeivan A, Pourfathollah AA, Deyhim M, Hajati E, Goodarzi A. Comparative evaluation of biochemical and hematological parameters of pre-storage leukoreduction during RBC storage. Int J Hematol Oncol Stem Cell Res. 2018;12(1):35–42.
Ho IC, Tai TS, Pai SY. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol. 2009 Feb;9(2):125-35. doi: 10.1038/nri2476. PMID: 19151747; PMCID: PMC2998182.
Pritchard GH, Kedl RM, Hunter CA. The evolving role of T-bet in resistance to infection. Nat Rev Immunol. 2019 Jun;19(6):398-410. doi: 10.1038/s41577-019-0145-4. PMID: 30846856; PMCID: PMC7272213.
Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev. 2011 May;241(1):260-8. doi: 10.1111/j.1600-065X.2011.01018.x. PMID: 21488902; PMCID: PMC3077798.
Al-nuri R, Noh LM. Normal ranges for peripheral lymphocyte subsets in healthy adults’ Malay population in Malaysia Research Article Normal ranges for peripheral lymphocyte subsets in healthy adults ’ Malay population in Malaysia. 2020;(March).
Wei B, Guo Y, Zhang L, Zhong H, Miao Q, Yan L, Bai Y, Feng W, Liu W, Niu Q, Li Y. Reference ranges of T lymphocyte subsets by single-platform among healthy population in southwest China. BMC Immunol. 2021 Dec 20;22(1):80. doi: 10.1186/s12865-021-00474-0. PMID: 34930155; PMCID: PMC8690880.
Xu D, Wu Y, Gao C, Qin Y, Zhao X, Liang Z, Wang Y, Feng M, Zhang C, Liu G, Luo J. Characteristics of and reference ranges for peripheral blood lymphocytes and CD4+ T cell subsets in healthy adults in Shanxi Province, North China. J Int Med Res. 2020 Jul;48(7):300060520913149. doi: 10.1177/0300060520913149. PMID: 32649852; PMCID: PMC7357075.
Dodd KC, Menon M. Sex bias in lymphocytes: Implications for autoimmune diseases. Front Immunol. 2022 Nov 24;13:945762. doi: 10.3389/fimmu.2022.945762. PMID: 36505451; PMCID: PMC9730535.
Kennedy, R. B., Ovsyannikova, I. G., Pankratz, V. S., Vierkant, R. A., Jacobson, R. M., Ryan, M. A., & Poland, G. A. (2009). Gender effects on humoral immune responses to smallpox vaccine. Vaccine, 27(25-26), 3319–3323. https://doi.org/10.1016/j.vaccine.2009.01.086
Choudhry, M. A., Bland, K. I., & Chaudry, I. H. (2007). Trauma and immune response--effect of gender differences. Injury, 38(12), 1382–1391. https://doi.org/10.1016/j.injury.2007.09.027
Sahmoudi, K., El Allam, A., El Fakihi, S., Tahoune, H., Sadak, A., El Hafidi, N., Bourkadi, J., El Aouad, R., & Seghrouchni, F. (2020). Moroccan lymphocyte subsets reference ranges: age, gender, ethnicity, and socio-economic factors dependent differences. Journal of immunoassay & immunochemistry, 41(3), 281–296. https://doi.org/10.1080/15321819.2020.1728543
Sivertsen, J., Braathen, H., Lunde, T. H. F., Kristoffersen, E. K., Hervig, T., Strandenes, G., & Apelseth, T. O. (2020). Cold-stored leukoreduced CPDA-1 whole blood: in vitro quality and hemostatic properties. Transfusion, 60(5), 1042–1049. https://doi.org/10.1111/trf.15748
Chng, W. J., Tan, G. B., & Kuperan, P. (2004). Establishment of adult peripheral blood lymphocyte subset reference range for an Asian population by single-platform flow cytometry: influence of age, sex, and race and comparison with other published studies. Clinical and diagnostic laboratory immunology, 11(1), 168–173. https://doi.org/10.1128/cdli.11.1.168-173.2004
Sivertsen, J., Braathen, H., Lunde, T. H. F., Kristoffersen, E. K., Hervig, T., Strandenes, G., & Apelseth, T. O. (2020). Cold-stored leukoreduced CPDA-1 whole blood: in vitro quality and hemostatic properties. Transfusion, 60(5), 1042–1049. https://doi.org/10.1111/trf.15748
National Blood Centre. TRANSFUSION for Clinical and. 2016;4.
Handbook of Blood Banking and Transfusion Medicine. Handbook of Blood Banking and Transfusion Medicine. Jaypee Brothers Medical Publishers (P) Ltd.; 2006.
Committee E, Agreement P. Guide to the preparation , use and. 2020.
Ambayya, A., Su, A. T., Osman, N. H., Nik-Samsudin, N. R., Khalid, K., Chang, K. M., Sathar, J., Rajasuriar, J. S., & Yegappan, S. (2014). Haematological reference intervals in a multiethnic population. PloS one, 9(3), e91968. https://doi.org/10.1371/journal.pone.0091968
Nah, E. H., Kim, S., Cho, S., & Cho, H. I. (2018). Complete Blood Count Reference Intervals and Patterns of Changes Across Pediatric, Adult, and Geriatric Ages in Korea. Annals of laboratory medicine, 38(6), 503–511. https://doi.org/10.3343/alm.2018.38.6.503
Blanco, R. A., Cavagnetto, C., Willmott, L., Aydogdu, E., Akinyemi, N., Standring, H., Procter, S., Garner, S. F., Shirakami, A., Saker, J., Linssen, J., & Cardigan, R. (2020). The use of a hematology analyzer with a new generation of software as an alternative to flow cytometry for enumerating residual white blood cells in blood components. Transfusion, 60(1), 155–164. https://doi.org/10.1111/trf.15606
Ledent, E., Semple, J. W., & Berlin, G. (2000). White blood cell subsets in buffy coat-derived platelet concentrates: the effect of pre- and poststorage filtration. Vox sanguinis, 79(4), 235–241. https://doi.org/10.1159/000056737
Huang, C., Zhou, L., Chang, X., Pang, X., Zhang, H., & Zhang, S. (2016). B7-H3, B7-H4, Foxp3 and IL-2 expression in cervical cancer: Associations with patient outcome and clinical significance. Oncology reports, 35(4), 2183–2190. https://doi.org/10.3892/or.2016.4607
Baumgartner, J. M., Silliman, C. C., Moore, E. E., Banerjee, A., & McCarter, M. D. (2009). Stored red blood cell transfusion induces regulatory T cells. Journal of the American College of Surgeons, 208(1), 110–119. https://doi.org/10.1016/j.jamcollsurg.2008.08.012
Barrett, C. S., Millena, A. C., & Khan, S. A. (2017). TGF-β Effects on Prostate Cancer Cell Migration and Invasion Require FosB. The Prostate, 77(1), 72–81. https://doi.org/10.1002/pros.23250
Zou, Z., Zhao, L., Su, S., Liu, Q., Yu, L., Wei, J., Yang, Y., Du, J., Shen, J., Qian, X., Fan, X., Guan, W., & Liu, B. (2018). The plasma levels of 12 cytokines and growth factors in patients with gastric cancer. Medicine, 97(19), e0413. https://doi.org/10.1097/MD.0000000000010413
Alspach, E., Lussier, D. M., & Schreiber, R. D. (2019). Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harbor perspectives in biology, 11(3), a028480. https://doi.org/10.1101/cshperspect.a028480
Aqbi, H. F., Wallace, M., Sappal, S., Payne, K. K., & Manjili, M. H. (2018). IFN-γ orchestrates tumor elimination, tumor dormancy, tumor escape, and progression. Journal of leukocyte biology, 10.1002/JLB.5MIR0917-351R. Advance online publication. https://doi.org/10.1002/JLB.5MIR0917-351R
Jorgovanovic, D., Song, M., Wang, L., & Zhang, Y. (2020). Roles of IFN-γ in tumor progression and regression: a review. Biomarker research, 8, 49. https://doi.org/10.1186/s40364-020-00228-x
Huang, C., & Bi, J. (2021). Expression Regulation and Function of T-Bet in NK Cells. Frontiers in immunology, 12, 761920. https://doi.org/10.3389/fimmu.2021.761920
Pandey, P., Chaudhary, R., Aggarwal, A., Kumar, R., Khetan, D., & Verma, A. (2010). Transfusion-associated immunomodulation: Quantitative changes in cytokines as a measure of immune responsiveness after one time blood transfusion in neurosurgery patients. Asian journal of transfusion science, 4(2), 78–85. https://doi.org/10.4103/0973-6247.67021
Aguilar-Nascimento, J. E., Zampieri-Filho, J. P., & Bordin, J. O. (2021). Implications of perioperative allogeneic red blood cell transfusion on the immune-inflammatory response. Hematology, transfusion and cell therapy, 43(1), 58–64. https://doi.org/10.1016/j.htct.2020.03.003
Pucino, V., De Rosa, V., Procaccini, C., & Matarese, G. (2014). Regulatory T cells, leptin and angiogenesis. Chemical immunology and allergy, 99, 155–169. https://doi.org/10.1159/000353557
Shigemura, T., Yanagisawa, R., Komori, K., Morita, D., Kurata, T., Tanaka, M., Sakashita, K., & Nakazawa, Y. (2019). Prevention of transfusion-transmitted cytomegalovirus infection using leukoreduced blood components in patients receiving seronegative umbilical cord blood transplantation. Transfusion, 59(10), 3065–3070. https://doi.org/10.1111/trf.15456