Phytochemicals and Proteomic Profiling of Ethyl Acetate of M. micrantha Extract Treated Hypercholesterolemic Rats

Main Article Content

Nurul Husna Shafie
Azlinda Ibrahim
Norhaizan Mohd Esa
Siti Raihanah Shafie
Hasnah Bahari
Nurul Hayati Mohamad Zainal

Abstract

Introduction: Mikania micrantha possess potent anti-hypercholesterolemic properties. However, the phytochemicals of M. micrantha and protein regulation that led to its hypocholesterolemia effects are limited. The aim of this study is to investigate the phytochemicals and proteomic profiling of liver samples from hypercholesterolemic rats that were treated with M. micrantha extract. Materials and methods: The identification of phytochemicals in the ethyl acetate of M. micrantha stem (EAMMS) extract was conducted through the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS). The rats were divided into two distinct groups: a normal group (NC) and a group induced with hypercholesterolemia, both of which were observed for an initial duration of four weeks. Following the completion of the fourth week of the induction period, the rats were divided into five groups: 1% high cholesterol diet (HCD), 1% HCD + Simvastatin (10 mg/kg of body weight (BW)), 1% HCD + EAMMS (50 mg/kg/BW), 1% HCD + EAMMS (100 mg/kg/BW) and 1% HCD + EAMMS (200 mg/kg/BW) for another 4 weeks of treatment periods. The LC-MS/MS analysis was conducted on liver tissue to identify differentially expressed proteins. Results: The phytochemicals were identified in the EAMMS extract, including theobromine, ishwarol, pheophorbides, and dihydromikanolide. In association with hypercholesterolemia, a total of 26 differentially expressed proteins were identified. Among these proteins, nine proteins exhibited elevated levels, whereas 17 showed downregulation, which mainly involved in lipid metabolism pathway. Conclusion: Overall, these results provide understanding on the molecular targets of EAMMS extract, which could be used for further study on the putative anti-hypercholesterolemic properties. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Shafie, N. H., Ibrahim, A., Mohd Esa, N., Shafie, S. R., Bahari, H., & Mohamad Zainal, N. H. (2024). Phytochemicals and Proteomic Profiling of Ethyl Acetate of M. micrantha Extract Treated Hypercholesterolemic Rats . Malaysian Journal of Medicine and Health Sciences, 20(4), 114–123. https://doi.org/10.47836/mjmhs20.4.15
Section
Original Articles

References

Adekiya TA, Shodehinde SA, Aruleba RT. Anti-hypercholesterolemic effect of unripe Musa paradisiaca products on hypercholesterolemia-induced rats. J Appl Pharm Sci. 2018;8(10):90-7. doi: 10.7324/JAPS.2018.81012.

Avcı G, Kupeli E, Eryavuz A, Yesilada E, Kucukkurt I. Antihypercholesterolaemic and antioxidant activity assessment of some plants used as remedy in Turkish folk medicine. J Ethnopharmacol. 2006;107(3):418-23. doi: 10.1016/j.jep.2006.03.032.

Das SS, Vasisht S, Das N, Srivastava LM, Dubey KK, Watal G. Correlation between total antioxidant status and lipid peroxidation in hypercholesterolemia. Curr Sci -Bangalore. 2000;78(4):486-86.

Aftab T, Hakeem KR. Medicinal and Aromatic Plants: Healthcare and Industrial Applications. Springer Nature. 2021. doi:10.1007/978-3-030-58975-2_1.

Sham TT, Chan CO, Wang YH, Yang JM, Mok DK, Chan SW. A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect. Biomed Res Int. 2014:1-21. doi: 10.1155/2014/925302.

Ibrahim A, Shafie NH, Mohd Esa N, Shafie SR, Bahari H, Abdullah MA. Mikania micrantha extract inhibits HMG-CoA reductase and ACAT2 and ameliorates hypercholesterolemia and lipid peroxidation in high cholesterol-fed rats. Nutrients. 2020;12(10):3077-3086. doi: 10.3390/nu12103077.

Bellosta S, Paoletti R, Corsini A. Safety of statins: Focus on clinical pharmacokinetics and drug interactions. Circulation 2004, 109, 50-57. https://doi.org/10.1161/01.CIR.0000131519.15067.1f

Day MD, Clements DR, Gile C, Senaratne WK, Shen S, Weston LA, Zhang F. Biology and impacts of Pacific Islands invasive species. Mikania micrantha Kunth (Asteraceae). Pac Sci. 2016;70(3):257-85. doi: 10.2984/70.3.1.

Tripathi RS, Khan ML, Yadav AS. Biology of Mikania micrantha HBK: A review. Invasive alien plants: An ecological appraisal for the Indian subcontinent. 2012;9(10):99-107.

Saha S, Mandal SK, Chowdhury HR. Anato-pharmacognostic studies of Mikania micrantha Kunth: a promising medicinal climber of the family Asteraceae. Int J Res Ayurveda Pharm. 2015;6(6):773-80. doi: 10.7897/2277-4343.066144.

Ardianto A, Munarsih D, Rahayu IN, Aslam MM, Aditya MF, Estiningsih D, Fatmawati A, Saputro PH. Screening, and antidiarrheal activity testing of Sembung Rambat (Mikania micrantha) leaves. J Med Sci. 2022;10(8):194-9. doi: 10.3889/oamjms.2022.9458.

Nurdiana S, Nur Ajeerah S, Nur Farhana AS, Siti Khairiyah MH, Norashirene MJ. Hypoglycaemic, antioxidant and wound healing activities of Mikania micrantha leaves extract in normal and alloxan-induced diabetic rats. Focus and Scope. 2013;7(2):6-10. doi: 10.22159/ajpcr.2018.v11i3.23283.

Deori C, Dutta G, Das S, Phukan D, Gogoi G. To evaluate the anti-inflammatory activity of ethanolic extract of leaves of Mikania micrantha on experimental animal models. J Evol Med Dent Sci. 2017;6(50):3818-22.

Chetia J, Upadhyaya S, Bora DK. Screening of phytochemicals, antioxidant, and antimicrobial activity of some tea garden weeds of Tinsukia, Assam. Int J Pharm Sci Rev Res. 2014;26(33):193-6.

Ishak AH, Shafie NH, Esa NM, Bahari H, Ismail A. From weed to medicinal plant: Antioxidant capacities and phytochemicals of various extracts of Mikania micrantha. Int J Agric Biol; 2018;20(3):561-8. doi: 10.17957/IJAB/15.0522.

Wan Nurhayati WH, Norli Arlizan T, Nurdiana S. Effect of Mikania micrantha leaf extract on the level of blood glucose and hepatic glycogen in the normal and alloxan-induced diabetic rats. Indian J Nat Prod Resour. 2013;9(10):398-402.

Matawali A, Chin LP, Eng HS, Boon LH, Gansau JA. In vitro evaluation of antikinase, antiphosphatase and cytotoxic activities of Mikania micrantha HBK (Asteraceae) from Malaysia. J Chem Pharm Sci. 2016;9(2):696-701.

Dou X, Zhang Y, Sun N, Wu Y, Li L. The anti-tumor activity of Mikania micrantha aqueous extract in vitro and in vivo. Cytotechnology. 2014;66(1):107-17. doi: 10.1007/s10616-013-9543-9.

Ríos E, León A, Chávez MI, Torres Y, Ramírez-Apan MT, Toscano RA, et al. Sesquiterpene lactones from Mikania micrantha and Mikania cordifolia and their cytotoxic and anti-inflammatory evaluation. Fitoterapia. 2014;94(1):155-63. doi: 10.1016/j.fitote.2014.02.006.

Jyothilakshmi M, Jyothis M, Latha MS. Antidermatophytic activity of Mikania micrantha Kunth: an invasive weed. Pharmacognosy Res. 2015;7(1):20-1. doi: 10.4103/0974-8490.157994.

Mc PA, Ocotero VM, Balcazar RI, Jiménez FG. Phytochemical and pharmacological studies on Mikania micrantha HBK (Asteraceae). Phyton. 2010;79(1):77-77. doi: 10.32604/phyton.2010.79.077.

Dev UK, Hossain MT, Islam MZ. Phytochemical investigation, antioxidant activity and anthelmintic activity of Mikania micrantha leaves. World J Pharm Res. 2015;4(5):121-33.

Gómez MJ, Gómez-Ramos MM, Malato O, Mezcua M, Férnandez-Alba AR. Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography–quadrupole-time-of-flight mass spectrometry with an accurate-mass database. J of Chromatography A. 2010;1217(45):7038-54.

Gianazza E, Zoanni B, Mallia A, Brioschi M, Colombo GI, Banfi C. Proteomic studies on apoB‐containing lipoprotein in cardiovascular research: A comprehensive review. Mass Spect. Rev. 2023;42(4):1397-423.

Huang C, Zhang J, Huang J, Li H, Wen K, Bao J, Wu X, Sun R, Abudukeremu A, Wang Y, He Z. Proteomic and functional analysis of HDL subclasses in humans and rats: a proof-of-concept study. Lipids in Health Dis. 2023; 29;22(1):86-88.

Lee CH. A simple outline of methods for protein isolation and purification. Endocrinol Metab. 2017;32(1):18-22. doi: 10.3803/EnM.2017.32.1.18.

Hishamuddin MS, Lee SY, Isa NM, Lamasudin DU, Abidin SA, Mohamed R. Time-based LC-MS/MS analysis provides insights into early responses to mechanical wounding, a major trigger to agarwood formation in Aquilaria malaccensis Lam. RSC Adv. 2019;9(32):18383-93. doi: 10.1039/C8RA10616A.

Meng S, Xia W, Pan M, Jia Y, He Z, Ge W. Proteomics profiling and pathway analysis of hippocampal aging in rhesus monkeys. BMC Neurosci. 2020;21(1):1-2. doi: 10.1186/s12868-020-0550-4.

Dove DE, Su YR, Swift LL, Linton MF, Fazio S. ACAT1 deficiency increases cholesterol synthesis in mouse peritoneal macrophages. Atherosclerosis. 2006;1;186(2):267-74. doi: 10.1016/j.atherosclerosis.2005.08.005.

Borradaile NM, de Dreu LE, Barrett PH, Huff MW. Inhibition of hepatocyte apoB secretion by naringenin. J Lipid Res. 2002;43(9):1544-54. doi: 10.1194/jlr.M200115-JLR200.

Repa JJ, Buhman KK, Farese Jr RV, Dietschy JM, Turley SD. ACAT2 deficiency limits cholesterol absorption in the cholesterol‐fed mouse: Impact on hepatic cholesterol homeostasis. Hepatology. 2004;40(5):1088-97. doi: 10.1002/hep.20439.

Pal P, Gandhi H, Giridhar R, Yadav MR. ACAT inhibitors: the search for novel cholesterol lowering agents. Min-Rev Med Chem. 2013;13(8):1195-1219. doi: 10.2174/1389557511313080007.

Sapir A, Tsur A, Koorman T, Ching K, Mishra P, Bardenheier A, et al. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging. Proc Natl Acad Sci. 2014;111(37):3880-9. doi: 10.1073/pnas.1414748111.

De Rosa MC, Caputo M, Zirpoli H, Rescigno T, Tarallo R, Giurato G, et al. Identification of genes selectively regulated in human hepatoma cells by treatment with dyslipidemic sera and PUFAs. J Cell Physiol. 2015;230(9):2059-66. doi: 10.1002/jcp.24932.

Rescigno T, Capasso A, Tecce MF. Involvement of nutrients and nutritional mediators in mitochondrial 3‐hydroxy‐3‐methylglutaryl‐CoA synthase gene expression. J Cell Physiol. 2018;233(4):3306-14. doi: 10.1002/jcp.26177.

Lan T, Hu Y, Hu F, Li H, Chen Y, Zhang J, et al. Hepatocyte glutathione S-transferase mu 2 prevents non-alcoholic steatohepatitis by suppressing ASK1 signaling. J Hepatol. 2022;76(2):407-19. doi: 10.1016/j.jhep.2021.09.040.

Chen C, Wen M, Wang C, Yuan Z, Jin Y. Differential proteomic analysis of mouse cerebrums with high-fat diet (HFD)-induced hyperlipidemia. Peer J. 2022;10:e13806. doi: 10.7717/peerj.13806.

Lu J, Holmgren A. The thioredoxin antioxidant system Free Radic Biol Med. 2014;66:75-87. doi: 10.1016/j.freeradbiomed.2013.07.036.

Namba F, Kobayashi-Miura M, Goda T, Nakura Y, Nishiumi F, Son A, et al. Human thioredoxin-1 attenuates the rate of lipopolysaccharide-induced preterm delivery in mice in association with its anti-inflammatory effect. Pediatr Res. 2016;80(3):433-9. doi: 10.1038/pr.2016.100.

Watanabe R, Nakamura H, Masutani H, Yodoi J. Anti-oxidative, anti-cancer, and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol Ther. 2010;127(3):261-70. doi: 10.1016/j.pharmthera.2010.04.004.

Mosele F, Tavares AM, Colombo R, Caron-Lienert R, Araujo AS, Ribeiro MF, et al. Effects of purple grape juice in the redox-sensitive modulation of right ventricular remodeling in a pulmonary arterial hypertension model. J Cardiovasc Pharmacol. 2012;60(1):15-22. doi: 10.1097/FJC.0b013e3182550fd6.

Janitschke D, Lauer AA, Bachmann CM, Seyfried M, Grimm HS, Hartmann T, et al. Unique role of caffeine compared to other methylxanthines (theobromine, theophylline, pentoxifylline, propentofylline) in regulation of ad relevant genes in neuroblastoma sh-sy5y wild type cells. Int J Mol Sci. 2020;21(23):9015-9018. doi: 10.3390/ijms21239015.

Toufektsian MC, de Lorgeril M, Nagy N, Salen P, Donati MB, Giordano L, et al. Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr. 2008;138(4):747-52. doi: 10.1093/jn/138.4.747.

Fernández-Fernández L, Esteban G, Giralt M, Valente T, Bolea I, Solé M, et al. Catecholaminergic and cholinergic systems of mouse brain are modulated by LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids. Food & Func. 2015;6(4):1251-60. doi: 10.1039/C5FO00052A.

Azevedo Martins TE, Sales de Oliveira Pinto CA, Costa de Oliveira A, Robles Velasco MV, Gorriti Guitiérrez AR, Cosquillo Rafael MF, et al. Contribution of topical antioxidants to maintain healthy skin—A review. Sci Pharma. 2020;88(2):27. doi: 10.3390/scipharm88020027.

Donado-Pestana CM, dos Santos-Donado PR, Daza LD, Belchior T, Festuccia WT, Genovese MI. Cagaita fruit (Eugenia dysenterica DC.) and obesity: Role of polyphenols on already established obesity. Food Res Int. 2018;103:40-7. doi: 10.1016/j.foodres.2017.10.011.

Yamagishi K, Iso H, Kokubo Y, Saito I, Yatsuya H, Ishihara J, et al. Dietary intake of saturated fatty acids and incident stroke and coronary heart disease in Japanese communities: the JPHC Study. Eur Heart J. 2013;34(16):1225-32. doi: 10.1093/eurheartj/eht043.

Yamaguchi M, Nakagawa T. Change in lipid components in the adipose and liver tissues of regucalcin transgenic rats with increasing age: suppression of leptin and adiponectin gene expression. Int J Mol Med. 2007;20(3):323-8. doi: 10.3892/ijmm.20.3.323.

Yamaguchi M. Regucalcin and cell regulation: role as a suppressor protein in signal transduction. Mole Cell Biochem. 2011;353(1):101-37. doi: 10.1007/s11010-011-0779-4.

Van de Steeg E, Kleemann R, Jansen HT, van Duyvenvoorde W, Offerman EH, Wortelboer HM, DeGroot J. Combined analysis of pharmacokinetic and efficacy data of preclinical studies with statins markedly improves translation of drug efficacy to human trials. J Pharmacol Exp Ther. 2013;347(3):635-44.