Polyhydroxyalkanoate (PHA) and Wharton Jelly-mesenchymal Stem Cells (MSCs) for Corneal Regenerative Therapeutic Strategy
Main Article Content
Abstract
Introduction: Corneal regenerative medicine is a contemporary approach involving the use of biomaterials, biological factors and stem cells to reduce dependence on native tissue supply for transplantation. This study aims to investigate cellularized polyhydroxyalkanoate (PHA) scaffold with human telomerase-immortalized cornea epithelial cells (HTCEC) in combination with Wharton Jelly-Mesenchymal stem cells (MSC) or its conditioned media (CM) for ocular surface regeneration. Materials and methods: The PHA employed in this investigation, P(3HB-co-4HB-co-5HV-co-3HHx), was biosynthesized from Cupriavidus necator. The water contact angle as a measure of scaffold wettability was determined, and in vitro PHA biodegradation by lipase enzyme was conducted. The effects of MSC on the focal adhesion proteins were determined by immunofluorescence and immune regulatory proteins were studied. Common corneal genes’ expression was evaluated using qPCR. Results: There was a significant loss of PHA dry weight due to lipase biodegradation. MSC-conditioned media (CM) significantly improved HTCEC viability (121%) as compared to control (100%), p < 0.005. The effect of HTCEC/MSC co-culture on focal adhesion protein expression was significantly higher as compared to HTCEC single culture (p < 0.05). MSC co-culture with HTCEC showed increased secretion of IL-1β and TGF-β1 more than single HTCEC culture in a pro-inflammatory stimulated HTCEC model. Gene expressions for common corneal markers ITGB1, ABCG2, ABCB5, CK3, CK12, CX43, and ΔNP63 were upregulated in the presence of CM p < 0.05. Conclusion: Cellularized PHA scaffold used in combination with MSC is a novel regenerative medicine approach which has a huge potential for anterior ocular surface diseases.
Downloads
Article Details
References
de Girolamo L, Lucarelli E, Alessandri G, Antonietta Avanzini M, Ester Bernardo M, Biagi E, et al. Mesenchymal stem/stromal cells: a new “‘cells as drugs’” paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des [Internet]. 2013;19(13):2459–73. doi: 10.2174/1381612811319130015.
Jabbehdari S, Yazdanpanah G, Kanu LN, Chen E, Kang K, Anwar KN, et al. Therapeutic Effects of Lyophilized Conditioned-Medium Derived from Corneal Mesenchymal Stromal Cells on Corneal Epithelial Wound Healing. Curr Eye Res. 2020;45(12):1490–6. doi: 10.1080/02713683.2020.1762227.
Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, et al. Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Investig Ophthalmol Vis Sci. 2018;59(12):5194–200. doi: 10.1167/iovs.18-24803.
Wang D, Cao H, Hua W, Gao L, Yuan Y, Zhou X, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Bone Defect Repair. Membranes (Basel). 2022 Jul;12(7):716. doi: 10.3390/membranes12070716.
Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther. 2018 Jan;9(1). doi: 10.1186/s13287-018-0774-8.
Nuzzi R, Buono L, Scalabrin S, De Iuliis M, Bussolati B. Effect of Stem Cell-Derived Extracellular Vesicles on Damaged Human Corneal Endothelial Cells. Stem Cells Int. 2021;2021:6644463. doi: 10.1155/2021/6644463.
Liu X, Li X, Wu G, Qi P, Zhang Y, Liu Z, et al. Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Deliver miR-21 to Promote Corneal Epithelial Wound Healing through PTEN/PI3K/Akt Pathway. Arnhold S, editor. Stem Cells Int. 2022 Jul;2022:1252557. doi: 10.1155/2022/1252557.
Xi Y, Ju R, Wang Y. Mesenchymal Stem Cell-Derived Extracellular Vesicles for the Treatment of Bronchopulmonary Dysplasia. Front Pediatr. 2022 Apr;10:852034. doi: 10.3389/fped.2022.852034.
Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig A-K, Radtke S, et al. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med. 2015 Oct;4(10):1131–43. doi: 10.5966/sctm.2015-0078.
Tao H, Chen X, Cao H, Zheng L, Li Q, Zhang K, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Corneal Wound Repair. Stem Cells Int. 2019;2019. doi: 10.1155/2019/5738510.
Chuah JA, Yamada M, Taguchi S, Sudesh K, Doi Y, Numata K. Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: Effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym Degrad Stab [Internet]. 2013;98(1):331–8. Available from: http://dx.doi.org/10.1016/j.polymdegradstab.2012.09.008
Lakshmanan M, Foong CP, Abe H, Sudesh K. Biosynthesis and characterization of co and ter-polyesters of polyhydroxyalkanoates containing high monomeric fractions of 4-hydroxybutyrate and 5-hydroxyvalerate via a novel PHA synthase. Polym Degrad Stab [Internet]. 2019;163:122–35. Available from: https://doi.org/10.1016/j.polymdegradstab.2019.03.005
Förch R, Schönherr H, Jenkins ATA. Surface Design: Applications in Bioscience and Nanotechnology. Surface Design: Applications in Bioscience and Nanotechnology. 2009. 1–511 p. DOI:10.1002/9783527628599.
Ali I, Jamil N. Polyhydroxyalkanoates: Current applications in the medical field. Front Biol (Beijing). 2016;11(1):19–27. DOI: 10.1007/s11515-016-1389-z.
Volova T, Goncharov D, Sukovatyi A, Shabanov A, Nikolaeva E, Shishatskaya E. Electrospinning of polyhydroxyalkanoate fibrous scaffolds: Effects on electrospinning parameters on structure and properties. J Biomater Sci Polym Ed [Internet]. 2014;25(4):370–93. Available from: http://dx.doi.org/10.1080/09205063.2013.862400
Zhao Y, Rao Z, Xue Y, Gong P, Ji Y, Ma Y. Biosynthesis, property comparison, and hemocompatibility of bacterial and haloarchaeal poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Sci Bull 2015 6022. 2015;60(22):1901–10. https://doi.org/10.1007/s11434-015-0923-8.
Peng SW, Guo XY, Shang GG, Li J, Xu XY, You ML, et al. An assessment of the risks of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity. Biomaterials. 2011;32(10):2546–55. Available from: http://dx.doi.org/10.1016/j.biomaterials.2010.12.051
Ahearne M, Fernández-Pérez J, Masterton S, Madden PW, Bhattacharjee P. Designing Scaffolds for Corneal Regeneration. Adv Funct Mater. 2020;30(44). https://doi.org/10.1002/adfm.201908996.
Alves NM, Pashkuleva I, Reis RL, Mano JF. Controlling cell behavior through the design of polymer surfaces. Small. 2010;6(20):2208–20. doi: 10.1002/smll.201000233.
Fukazawa K, Nakao A, Maeda M, Ishihara K. Photoreactive Initiator for Surface-Initiated ATRP on Versatile Polymeric Substrates. ACS Appl Mater Interfaces. 2016;8(38):24994–8. doi: 10.1021/acsami.6b07145.
Inoue Y, Nakanishi T, Ishihara K. Elastic repulsion from polymer brush layers exhibiting high protein repellency. Langmuir. 2013;29(34):10752–8. doi: 10.1021/ la4021492.
Casaroli-Marano RP, Peinado-Onsurbe J, Reina M, Staels B, Auwerx J, Vilaró S. Lipoprotein lipase in highly vascularized structures of the eye. J Lipid Res. 1996;37(5):1037–44. Doi.org/ 10.1016/s0022-2275(20)42013-9 ·
Robciuc A, Rantamaki AH, Jauhiainen M, Holopainen JM. Lipid-modifying enzymes in human tear fluid and corneal epithelial stress response. Investig Ophthalmol Vis Sci. 2014;55(1):16–24. DOI: 10.1167/iovs.13-12577
Nakayama M, Okada H, Seki M, Suzuki Y, Chung U il, Ohba S, et al. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell–cell interactions underlying the bone repair process. Regen Ther [Internet]. 2022;21:9–18. Available from: https://doi.org/10.1016/j.reth.2022.05.001
Linfield DT, Gao N, Raduka A, Harford TJ, Piedimonte G, Rezaee F. RSV attenuates epithelial cell restitution by inhibiting actin cytoskeleton-dependent cell migration. Am J Physiol - Lung Cell Mol Physiol. 2021;321(1):L189–203. doi: 10.1152/ajplung.00118.2021.
Okimura C, Iwanaga M, Sakurai T, Ueno T, Urano Y, Iwadate Y, et al. Leading-edge elongation by follower cell interruption in advancing epithelial cell sheets. 2022;1–10. doi.org/10.1973/pnas. 2119903119.
Fernandes-Cunha GM, Na KS, Putra I, Lee HJ, Hull S, Cheng YC, et al. Corneal Wound Healing Effects of Mesenchymal Stem Cell Secretome Delivered Within a Viscoelastic Gel Carrier. Stem Cells Transl Med. 2019;8(5):478–89. doi: 10.1002/sctm.18-0178.
Azmi SM, Salih M, Abdelrazeg S, Roslan FF, Mohamed R, Jie TJ, et al. Human umbilical cord-mesenchymal stem cells: A promising strategy for corneal epithelial regeneration. Regen Med. 2020;15(3):1381–97. doi: 10.2217/rme-2019-0103.
Notara M, Lentzsch A, Coroneo M, Cursiefen C. The role of limbal epithelial stem cells in regulating corneal (Lymph)angiogenic Privilege and the micromilieu of the limbal niche following UV Exposure. Stem Cells Int. 2018;2018. doi: 10.1155/2018/8620172
Wilson SE. Interleukin-1 and transforming growth factor beta: commonly opposing, but sometimes supporting, master regulators of the corneal wound healing response to injury. Investig Ophthalmol Vis Sci. 2021;62(4). doi: 10.1167/iovs.62.4.8.
Tseng HC, Lee IT, Lin CC, Chi PL, Cheng SE, Shih RH, et al. IL-1β Promotes Corneal Epithelial Cell Migration by Increasing MMP-9 Expression through NF-κB- and AP-1-Dependent Pathways. PLoS One. 2013;8(3). doi: 10.1371/journal.pone.0057955.
Tandon A, Tovey JCK, Sharma A, Gupta R, Mohan RR. Role of Transforming Growth Factor Beta in Corneal Function, Biology and Pathology. Curr Mol Med. 2012;10(6):565–78. doi: 10.2174/1566524011009060565.
Wilson SE. Corneal myofibroblasts and fibrosis. Exp Eye Res [Internet]. 2020;201:108272. doi.org/10.1016/j.exer.2020.108272
Joseph A, Baiju I, Bhat IA, Pandey S, Bharti M, Verma M, et al. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. J Cell Physiol. 2020;235(7–8):5555–69. doi: 10.1002/jcp.29486.
Chen L, Xu Y, Zhao J, Zhang Z, Yang R, Xie J, et al. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One [Internet]. 2014 Apr 29 [cited 2022 Sep 2];9(4). doi: 10.1371/journal.pone.0096161.
Sagaradze G, Grigorieva O, Nimiritsky P, Basalova N, Kalinina N, Akopyan Z, et al. Conditioned medium from human mesenchymal stromal cells: Towards the clinical translation. Int J Mol Sci. 2019;20(7):1–16. https://doi.org/10.3390/ijms20071656.
Parapuram SK, Huh K, Liu S, Leask A. Integrin β1 is necessary for the maintenance of corneal structural integrity. Investig Ophthalmol Vis Sci. 2011;52(11):7799–806. doi: 10.1167/iovs.10-6945.
Gingras MÈ, Masson-Gadais B, Zaniolo K, Leclerc S, Drouin R, Germain L, et al. Differential binding of the transcription factors Sp1, AP-1, and NFI to the promoter of the human α5 integrin gene dictates its transcriptional activity. Investig Ophthalmol Vis Sci. 2009;50(1):57–67. doi: 10.1167/iovs.08-2059.
Lake J, Zaniolo K, Gaudreault M, Carrier P, Deschambault A, Bazin R, et al. Expression of the α5 integrin gene in corneal epithelial cells cultured on tissue-engineered human extracellular matrices. Biomaterials. 2013 Sep;34(27):6367–76. doi: 10.1016/j.biomaterials.2013.05.007.
Boettiger D. Mechanical control of integrin-mediated adhesion and signaling. Curr Opin Cell Biol. 2012 Oct;24(5):592–9. DOI: 10.1016/j.ceb.2012.07.002.
Zhang Y, Yeh LK, Zhang S, Call M, Yuan Y, Yasunaga M, et al. Wnt/β-catenin signaling modulates corneal epithelium stratification via inhibition of Bmp4 during mouse development. Dev. 2015;142(19):3383–93. doi: 10.1242/dev.125393.
Kureshi AK, Dziasko M, Funderburgh JL, Daniels JT. Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents. Sci Rep. 2015;5(October):1–9. doi: 10.1038/srep16186.
Mikhailova A, Ilmarinen T, Uusitalo H, Skottman H. Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports [Internet]. 2014;2(2):219–31. http://dx.doi. org/10.1016/j.stemcr.2013.12.014.
Frank MH, Frank NY. Restoring the cornea from Limbal stem cells. Regen Med. 2015;10(1):1–4. https://doi.org/10.2217/rme.14.66.
Zhai J, Wang Q, Tao L. Connexin expression patterns in diseased human corneas. Exp Ther Med. 2014;7(4):791–8. doi: 10.3892/etm.2014.1530.
Xu CY, Zhang WS, Zhang H, Cao Y, Zhou HY. The Role of Connexin-43 in the Inflammatory Process: A New Potential Therapy to Influence Keratitis. J Ophthalmol. 2019;2019. https://doi.org/10.1155/2019/9312827.
Kumar A, Jagannathan N. Cytokeratin: A review on current concepts. Int J Orofac Biol. 2018;2(1):6. http://dx.doi.org/10.4103/ijofb.ijofb_3_18.
Shetty R, Vunnava KP, Dhamodaran K, Matalia H, Murali S, Jayadev C, et al. Characterization of Corneal Epithelial Cells in Keratoconus. Transl Vis Sci Technol. 2019 Jan;8(1). doi: 10.1167/tvst.8.1.2.
Irvine AD, Corden LD, Swensson O, Swensson B, Moore JE, Frazer DG, et al. Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann’s corneal dystrophy. Nat Genet 1997 162. 1997;16(2):184–7. doi: 10.1038/ng0697-184.