Protective Effect of Natural Products Against Cisplatin-Induced DNA Damage in Kidney and Liver via Its Signalling Transduction Pathways: A Review

Main Article Content

Nurul Illiya Zafirah Zulfikri
Ker Woon Choy
Nuraliza Abdul Satar
Farida Hussan
Nurul Raudzah Adib Ridzuan

Abstract

Cisplatin (CP) is an effective cancer chemotherapeutic agent which is used widely for treatment of a variety of cancer. Use of CP is limited due to persistence of severe adverse effects such as nephrotoxicity, hepatotoxicity, neurotoxicity and hearing loss. This article reviews the protective effects of natural products against CP-induced DNA damage in the liver and kidney, by emphasizing on the signalling transduction pathways. Recent studies suggested that natural products with antioxidant properties could prevent chemotherapy-induced side effects. This is due to its ability to decrease reactive oxygen species (ROS) where ROS accumulation would trigger DNA damage and apoptosis to other non-cancerous cells. Moreover, the DNA damage is also resulted from involvement of various responses including signalling transduction pathways that play roles in the mechanism of CP-induced DNA damage. Thus, this review discusses the natural products and their protective mechanisms against CP-induced liver and kidney injuries, specifically via involvement of their signalling transduction pathways.

Downloads

Download data is not yet available.

Article Details

How to Cite
Zulfikri, N. I. Z., Choy, K. W., Abdul Satar, N., Hussan, F., & Adib Ridzuan, N. R. (2024). Protective Effect of Natural Products Against Cisplatin-Induced DNA Damage in Kidney and Liver via Its Signalling Transduction Pathways: A Review. Malaysian Journal of Medicine and Health Sciences, 20(3), 327–338. https://doi.org/10.47836/mjmhs.20.3.44
Section
Review Article

References

Desoize B, Madoulet C. Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol Hematol. 2002;42(3):317-25. doi: 10.1016/s1040-8428(01)00219-0.

Ali R, Aouida M, Alhaj Sulaiman A, Madhusudan S, Ramotar D. Can cisplatin therapy be improved? Pathways that can be targeted. Int J Mol Sci. 2022;23(13):7241. doi: 10.3390/ijms23137241.

Dasari S, Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-78.. doi: 10.1016/j.ejphar.2014.07.025

Rosenberg B, Vancamp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumour agents. Nature. 1969;222(5191):385-6. doi: 10.1038/222385a0.

Oldenburg J, Los G. Cellular Mechanisms of Cisplatin Resistance. In Drug Resistance in Oncology 1997 Aug 21 (pp. 347-378). CRC Press.

Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin− DNA adducts. Chem Rev. 1999;99(9):2467-98. doi: 10.1021/cr980421n.

Sedletska Y, Giraud-Panis M-J, Malinge J-M. Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Curr Med Chem Anticancer Agents. 2005;5(3):251-65. doi: 10.2174/1568011053765967.

Fuertes M, Castilla J, Alonso C, Prez J. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem. 2003;10(3):257-66. doi: 10.2174/0929867033368484.

Nepomuceno JC. Antioxidants in cancer treatment. Current Cancer Treatment-Novel Beyond Conventional Approaches: IntechOpen; 2011. doi: 10.5772/23131

Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi SMR, Ranjbar A, et al. Elucidating role of reactive oxygen species (ROS) in cisplatin chemotherapy: a focus on molecular pathways and possible therapeutic strategies. Molecules. 2021;26(8):2382. doi: 10.3390/molecules26082382.

Robertazzi A, Platts JA. Hydrogen bonding and covalent effects in binding of cisplatin to purine bases: ab initio and atoms in molecules studies. Inorg Chem. 2005;44(2):267-74. doi: 10.1021/ic0489544.

Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006;12(9):440-50. doi: 10.1021/ic0489544.

Aldossary SA. Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharmacol J. 2019;12(1):7-15.doi: 10.13005/bpj/1608

Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010;2(11):2490-518. doi: 10.3390/toxins2112490

Arjumand W, Seth A, Sultana S. Rutin attenuates cisplatin induced renal inflammation and apoptosis by reducing NFκB, TNF-α and caspase-3 expression in Wistar rats. Food Chem Toxicol. 2011;49(9):2013-21. doi: 10.1016/j.fct.2011.05.012

Humanes B, Camaño S, Lara JM, Sabbisetti V, González-Nicolás MÁ, Bonventre JV, et al. Cisplatin-induced renal inflammation is ameliorated by cilastatin nephroprotection. Nephrol Dial Transplant. 2017;32(10):1645-55. doi: 10.1093/ndt/gfx005.

Hassanein EH, Abdel-Wahab BA, Ali FE, Abd El-Ghafar OA, Kozman MR, Sharkawi SM. Trans-ferulic acid ameliorates cisplatin-induced testicular damage via suppression of TLR4, P38-MAPK, and ERK1/2 signaling pathways. Environ Sci Pollut Res. 2021;28:41948-64. doi: 10.1007/s11356-021-13544-y.

Andrade-Silva M, Cenedeze MA, Perandini LA, Felizardo RJF, Watanabe IKM, Agudelo JSH, et al. TLR2 and TLR4 play opposite role in autophagy associated with cisplatin-induced acute kidney injury. Clin Sci. 2018;132(16):1725-39. doi: 10.1042/CS20170262.

Oh GS, Kim HJ, Choi JH, Shen A, Kim CH, Kim SJ, et al. Activation of lipopolysaccharide–TLR4 signaling accelerates the ototoxic potential of cisplatin in mice. J Immunol.. 2011;186(2):1140-50. doi: 10.4049/jimmunol.1002183.

Tu CT, Yao QY, Xu BL, Wang JY, Zhou CH, Zhang SC. Protective effects of curcumin against hepatic fibrosis induced by carbon tetrachloride: modulation of high-mobility group box 1, Toll-like receptor 4 and 2 expression. Food Chem Toxicol. 2012;50(9):3343-3351. doi:10.1016/j.fct.2012.05.050

Zhou J, Nie RC, Yin YX, Cai XX, Xie D, Cai MY. Protective Effect of Natural Antioxidants on Reducing Cisplatin-Induced Nephrotoxicity. Dis Markers. 2022;2022:1612348. doi:10.1155/2022/1612348

Harris IS, DeNicola GM. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol.. 2020;30(6):440-51. doi: 10.1016/j.tcb.2020.03.002.

Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci. 2017;11:338. doi: 10.3389/fncel.2017.00338

Liu Z, Wang M, Huang R, Hu T, Jing Y, Huang X, et al. Novel indole–chalcone derivative-ligated platinum (IV) prodrugs attenuate cisplatin resistance in lung cancer through ROS/ER stress and mitochondrial dysfunction. J Med Chem.. 2023;66(7):4868-87. doi: 10.1021/acs.jmedchem.2c02036.

Kim SJ, Park C, Lee JN, Park R. Protective roles of fenofibrate against cisplatin-induced ototoxicity by the rescue of peroxisomal and mitochondrial dysfunction. Toxicol Appl Pharmacol. 2018;353:43-54. doi:10.1016/j.taap.2018.06.010

Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg.. 2006;391:499-510. doi: 10.1007/s00423-006-0073-1.

Wei D, Zhang XL, Wang YZ, Yang CX, Chen G. Lipid peroxidation levels, total oxidant status and superoxide dismutase in serum, saliva and gingival crevicular fluid in chronic periodontitis patients before and after periodontal therapy. Aust Dent J.. 2010;55(1):70-8. doi: 10.1111/j.1834-7819.2009.01123.x.

Borrego S, Vazquez A, Dasí F, Cerdá C, Iradi A, Tormos C, et al. Oxidative stress and DNA damage in human gastric carcinoma: 8-Oxo-7'8-dihydro-2'-deoxyguanosine (8-oxo-dG) as a possible tumor marker. Int J Mol Sci.. 2013;14(2):3467-86. doi: 10.3390/ijms14023467.

Chatgilialoglu C, Ferreri C, Krokidis MG, Masi A, Terzidis MA. On the relevance of hydroxyl radical to purine DNA damage. Free Radic Res. 2021;55(4):384-404. doi: 10.1080/10715762.2021.1876855.

Ma X, Dang C, Kang H, Dai Z, Lin S, Guan H, et al. Saikosaponin-D reduces cisplatin-induced nephrotoxicity by repressing ROS-mediated activation of MAPK and NF-κB signalling pathways. Int Immunopharmacol.. 2015;28(1):399-408. doi: 10.1016/j.intimp.2015.06.020.

Chtourou Y, Aouey B, Kebieche M, Fetoui H. Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways. Chem Biol Interact. 2015;239:76-86. doi: 10.1016/j.cbi.2015.06.036.

Hu Jn, Leng J, Shen Q, Liu Y, Li Xd, Wang Sh, et al. Platycodin D suppresses cisplatin-induced cytotoxicity by suppressing ROS-mediated oxidative damage, apoptosis, and inflammation in HEK‐293 cells. J Biochem Mol Toxicol. 2021;35(1):e22624. doi: 10.1002/jbt.22624.

Mukhopadhyay P, Horváth B, Zsengellér Z, Zielonka J, Tanchian G, Holovac E, et al. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med.. 2012;52(2):497-506. doi: 10.1016/j.freeradbiomed.2011.11.001.

Janzer A, German NJ, Gonzalez-Herrera KN, Asara JM, Haigis MC, Struhl K. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci.. 2014;111(29):10574-9. doi: 10.1073/pnas.1409844111.

Aly HA, Eid BG. Cisplatin induced testicular damage through mitochondria mediated apoptosis, inflammation and oxidative stress in rats: Impact of resveratrol. Endocr J. 2020;67(9):969-80. doi: 10.1507/endocrj.EJ20-0149.

Wei YS, Chen YL, Li WY, et al. Antioxidant Nanoparticles Restore Cisplatin-Induced Male Fertility Defects by Promoting MDC1-53bp1-Associated Non-Homologous DNA Repair Mechanism and Sperm Intracellular Calcium Influx. Int J Nanomedicine. 2023;18:4313-4327. doi:10.2147/IJN.S408623.

Abdelghffar EA, Obaid WA, Mohammedsaleh ZM, Ouchari W, Eldahshan OA, Sobeh M. Ajwa dates (Phoenix dactylifera L.) attenuate cisplatin-induced nephrotoxicity in rats via augmenting Nrf2, modulating NADPH oxidase-4 and mitigating inflammatory/apoptotic mediators. BiomedPharmacother. 2022;156:113836. doi: 10.1016/j.biopha.2022.113836.

Aboraya DM, El Baz A, Risha EF, Abdelhamid FM. Hesperidin ameliorates cisplatin induced hepatotoxicity and attenuates oxidative damage, cell apoptosis, and inflammation in rats. Saudi J Biol Sci.. 2022;29(5):3157-66. doi: 10.1016/j.sjbs.2022.01.052.

Vomhof-DeKrey EE, Picklo Sr MJ. The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism. J Nutr Biochem.. 2012;23(10):1201-6. doi: 10.1016/j.jnutbio.2012.03.005

Ma N, Wei W, Fan X, Ci X. Farrerol Attenuates Cisplatin-Induced Nephrotoxicity by Inhibiting the Reactive Oxygen Species-Mediated Oxidation, Inflammation, and Apoptotic Signaling Pathways. Front Physiol. 2019;10:1419. doi:10.3389/fphys.2019.01419

Itoh K, Wakabayashi N, Katoh Y, Ishii T, O'Connor T, Yamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells.. 2003;8(4):379-91. doi: 10.1046/j.1365-2443.2003.00640.x.

Li R, Jia Z, Zhu H. Regulation of Nrf2 signaling. React Oxyg Species. (Apex, NC). 2019;8(24):312.

Zhao J, Zhang B, Li S, Zeng L, Chen Y, Fang J. Mangiferin increases Nrf2 protein stability by inhibiting its ubiquitination and degradation in human HL60 myeloid leukemia cells. Int J Mol Med. 2014;33(5):1348-54. doi: 10.3892/ijmm.2014.1696.

Hao Y, Huang Y, Chen J, Li J, Yuan Y, Wang M, et al. Exopolysaccharide from Cryptococcus heimaeyensis S20 induces autophagic cell death in non-small cell lung cancer cells via ROS/p38 and ROS/ERK signalling. Cell Prolif.. 2020;53(8):e12869. doi: 10.1111/cpr.12869.

Achkar IW, Abdulrahman N, Al-Sulaiti H, Joseph JM, Uddin S, Mraiche F. Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J Transl Med.. 2018;16(1):1-12. doi: 10.1186/s12967-018-1471-1.

Sánchez-Perez I, Murguía JR, Perona R. Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene. 1998;16(4):533-40. doi: 10.1038/sj.onc.1201578.

Wang X, Gong Q, Song C, Fang J, Yang Y, Liang X, et al. Berberine-photodynamic therapy sensitizes melanoma cells to cisplatin-induced apoptosis through ROS-mediated P38 MAPK pathways. Toxicol Appl Pharmacol.2021;418:115484. doi: 10.1016/j.taap.2021.115484.

Song WH, Kim H-Y, Lim YS, Hwang SY, Lee C, Lee DY, et al. Fish collagen peptides protect against cisplatin-induced cytotoxicity and oxidative injury by inhibiting MAPK signaling pathways in mouse thymic epithelial cells. Mar Drugs. 2022;20(4):232.doi: 10.3390/md20040232.

Hsieh MJ, Wang CW, Lin JT, et al. Celastrol, a plant-derived triterpene, induces cisplatin-resistance nasopharyngeal carcinoma cancer cell apoptosis though ERK1/2 and p38 MAPK signaling pathway. Phytomedicine. 2019;58:152805. doi:10.1016/j.phymed.2018.12.028.

Yan Y, Zhou XE, Xu HE, Melcher K. Structure and physiological regulation of AMPK. Int J Mol Sci. 2018;19(11):3534. doi: 10.3390/ijms19113534.

Li B, Ding CM, Li YX, Peng JC, Geng N, Qin WW. MicroRNA‑145 inhibits migration and induces apoptosis in human non‑small cell lung cancer cells through regulation of the EGFR/PI3K/AKT signaling pathway. Oncol Rep.. 2018;40(5):2944-54. doi: 10.3892/or.2018.6666.

Wang Y, Zhang YH, Tang YR, et al. Protective effects of tanshinone Ⅰ against cisplatin-induced nephrotoxicity in mice. Iran J Basic Med Sci. 2022;25(3):414-418. doi:10.22038/IJBMS.2022.58959.13102

Suliman FA, Khodeer DM, Ibrahiem A, Mehanna ET, El-Kherbetawy MK, Mohammad HM, et al. Renoprotective effect of the isoflavonoid biochanin A against cisplatin induced acute kidney injury in mice: effect on inflammatory burden and p53 apoptosis. Int Immunopharmacol.. 2018;61:8-19. doi: 10.1016/j.intimp.2018.05.010.

Zhang Y, Chen Y, Li B, Ding P, Jin D, Hou S, et al. The effect of monotropein on alleviating cisplatin-induced acute kidney injury by inhibiting oxidative damage, inflammation and apoptosis. Biomed Pharmacother.. 2020;129:110408. doi: 10.1016/j.biopha.2020.110408.

Mohamed ME, Abduldaium YS, Younis NS. Ameliorative effect of linalool in cisplatin-induced nephrotoxicity: the role of HMGB1/TLR4/NF-κB and Nrf2/HO1 pathways. Biomolecules. 2020;10(11):1488. doi: 10.3390/biom10111488.

Zhang Y, Tao X, Yin L, Xu L, Xu Y, Qi Y, et al. Protective effects of dioscin against cisplatin-induced nephrotoxicity via the microRNA-34a/sirtuin 1 signalling pathway. Br J Pharmacol. 2017;174(15):2512-27. doi: 10.1111/bph.13862.

Fan X, Wei W, Huang J, Liu X, Ci X. Isoorientin attenuates cisplatin-induced nephrotoxicity through the inhibition of oxidative stress and apoptosis via activating the SIRT1/SIRT6/Nrf-2 pathway. Front Pharmacol. 2020;11:264. doi: 10.3389/fphar.2020.00264.

Fan X, Wei W, Huang J, Peng L, Ci X. Daphnetin attenuated cisplatin-induced acute nephrotoxicity with enhancing antitumor activity of cisplatin by upregulating SIRT1/SIRT6-Nrf2 pathway. Front Pharmacol. 2020;11:579178. doi: 10.3389/fphar.2020.579178.

Hu J, Gu W, Ma N, Fan X, Ci X. Leonurine alleviates ferroptosis in cisplatin-induced acute kidney injury by activating the Nrf2 signalling pathway.Br J Pharmacol. 2022;179(15):3991-4009. doi: 10.1111/bph.15834.

Qi H, Shi H, Yan M, Zhao L, Yin Y, Tan X, et al. Ammonium tetrathiomolybdate relieves oxidative stress in cisplatin-induced acute kidney injury via NRF2 signaling pathway. Cell Death Discov..2023;9(1):259. doi: 10.1038/s41420-023-01564-1.

Wang S, Tang S, Chen X, Li X, Jiang S, Li H-p, et al. Pulchinenoside B4 exerts the protective effects against cisplatin-induced nephrotoxicity through NF-κB and MAPK mediated apoptosis signaling pathways in mice. Chem-Biol Interact.. 2020;331:109233. doi: 10.1016/j.cbi.2020.109233.

Alqahtani MJ, Mostafa SA, Hussein IA, Elhawary S, Mokhtar FA, Albogami S, et al. Metabolic profiling of Jasminum grandiflorum L. flowers and protective role against cisplatin-induced nephrotoxicity: Network pharmacology and in vivo validation. Metabolites. 2022;12(9):792. doi: 10.3390/metabo12090792. doi: 10.3390/metabo12090792.

Alhoshani AR, Hafez MM, Husain S, Al-Sheikh AM, Alotaibi MR, Al Rejaie SS, et al. Protective effect of rutin supplementation against cisplatin-induced Nephrotoxicity in rats. BMC Nephrol. 2017;18(1):1-10. doi: 10.1186/s12882-017-0601-y.

Park JY, Lee D, Jang H-J, Jang DS, Kwon HC, Kim KH, et al. Protective effect of Artemisia asiatica extract and its active compound eupatilin against cisplatin-induced renal damage. Evid Based Complement Alternat Med. 2015;2015. doi: 10.1155/2015/483980

Park YJ, Kim KS, Park JH, Lee SH, Kim HR, Lee SH, et al. Protective effects of dendropanoxide isolated from Dendropanax morbifera against cisplatin-induced acute kidney injury via the AMPK/mTOR signaling pathway. Food Chem Toxicol. 2020;145:111605. doi: 10.1016/j.fct.2020.111605.

Xing Jj, Hou Jg, Ma Zn, Wang Z, Ren S, Wang Yp, et al. Ginsenoside Rb3 provides protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK‐/mTOR-mediated autophagy and inhibition of apoptosis in vitro and in vivo. Cell Prolif. 2019;52(4):e12627. doi: 10.1111/cpr.12627.

Li R-y, Zhang W-z, Yan X-t, Hou J-g, Wang Z, Ding C-b, et al. Arginyl-fructosyl-glucose, a major Maillard reaction product of red ginseng, attenuates cisplatin-induced acute kidney injury by regulating nuclear factor κB and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. J Agric Food Chem. 2019;67(20):5754-63. doi: 10.1021/acs.jafc.9b00540.

Lin J, Huang H-f, Yang S-k, Duan J, Qu S-m, Yuan B, et al. The effect of Ginsenoside Rg1 in hepatic ischemia reperfusion (I/R) injury ameliorates ischemia-reperfusion-induced liver injury by inhibiting apoptosis. Biomed Pharmacother. 2020;129:110398. doi: 10.1016/j.biopha.2020.110398.

Gao Y, Chu S, Shao Q, Zhang M, Xia C, Wang Y, et al. Antioxidant activities of ginsenoside Rg1 against cisplatin-induced hepatic injury through Nrf2 signaling pathway in mice. Free Radic Res. 2017;51(1):1-13. doi: 10.1080/10715762.2016.1234710.

Xiang Y, Ji M, Wu L, Lv L, Liang Q, Deng R, et al. Rosmarinic acid prevents cisplatin-induced liver and kidney injury by inhibiting inflammatory responses and enhancing total antioxidant capacity, thereby activating the Nrf2 signaling pathway. Molecules. 2022;27(22):7815. doi: 10.3390/molecules27227815.

Mohamed HE, Badawy MM. Modulatory effect of zingerone against cisplatin or γ-irradiation induced hepatotoxicity by molecular targeting regulation. Appl Radiat Isot.2019;154:108891. doi: 10.1016/j.apradiso.2019.108891.

Hassan HM, Al-Wahaibi LH, Elmorsy MA, Mahran YF. Suppression of cisplatin-induced hepatic injury in rats through alarmin high-mobility group box-1 pathway by Ganoderma lucidum: theoretical and experimental study. Drug des devel ther. 2020;14:2335. doi: 10.2147/DDDT.S249093.

Al-Malki AL, Sayed AAR. Thymoquinone attenuates cisplatin-induced hepatotoxicity via nuclear factor kappa-β. BMC Complement Alternat Med.2014;14(1):1-8. doi: 10.1186/1472-6882-14-282.

Sun Y, Yang J, Wang L, Sun L, Dong Q. Crocin attenuates cisplatin-induced liver injury in the mice. Human Experiment Toxicol. 2014;33(8):855-62. doi: 10.1177/0960327113511475.

Sohn JH, Han KL, Kim JH, Rukayadi Y, Hwang JK. Protective Effects of macelignan on cisplatin-induced hepatotoxicity is associated with JNK activation. Biol Pharm Bull. 2008;31(2):273-277. doi:10.1248/bpb.31.273.

Hong KO, Hwang JK, Park K-K, Kim SH. Phosphorylation of c-Jun N-terminal Kinases (JNKs) is involved in the preventive effect of xanthorrhizol on cisplatin-induced hepatotoxicity. Arch Toxicol.. 2005;79:231-6. doi: 10.1007/s00204-004-0623-7.

Omar HA, Mohamed WR, Arab HH, Arafa E-SA. Tangeretin alleviates cisplatin-induced acute hepatic injury in rats: targeting MAPKs and apoptosis. PloS ONE.. 2016;11(3):e0151649. doi: 10.1371/journal.pone.0151649.

Fathy M, Darwish MA, Abdelhamid A-SM, Alrashedy GM, Othman OA, Naseem M, et al. Kinetin ameliorates cisplatin-induced hepatotoxicity and lymphotoxicity via attenuating oxidative damage, cell apoptosis and inflammation in rats. Biomedicines. 2022;10(7):1620. doi: 10.3390/biomedicines10071620.

Naqshbandi A, Khan W, Rizwan S, Khan F. Studies on the protective effect of flaxseed oil on cisplatin-induced hepatotoxicity. Human Experiment Toxicol. 2012;31(4):364-75. doi: 10.1177/0960327111432502.