Alphacalcidol Supplementation Improves Acetylcholine-Mediated Relaxation in Aorta of Diabetic Rats on Vitamin D-Deficient Diet

Main Article Content

Jen Hou Low
Suk Peng Tang
Aida Hanum Ghulam Rasool
Mohd Zaini Asmawi
Siti Safiah Mokhtar

Abstract

Introduction: Vitamin D deficiency has been implicated as one of the factors involved in endothelial dysfunction associated with diabetes. This study aimed to evaluate the effects of active vitamin D (alphacalcidol) supplementation on aortic endothelial function in diabetic rats receiving vitamin D-deficient diet. Methods: Streptozotocin-induced diabetic rats were fed with standard diet (D) or vitamin D-deficient diet (DD and DDS) for 10 weeks. Group DDS was then supplemented with 0.2 μg/kg alphacalcidol at the last four weeks of the study duration. Non-diabetic rats were fed with standard diet (N) or vitamin-D deficient diet (ND). At the end of the experiment, the rats were sacrificed, and their aortic rings were harvested for endothelial functional study. Results: Acetylcholine-induced relaxation in aorta of diabetic rats (D and DD) were significantly lower compared to non-diabetic rats (N). In the presence of endothelial nitric oxide synthase blocker (L-NAME), maximal relaxation induced by acetylcholine in aorta of D and DD groups were significantly higher compared to N, ND and DDS groups, indicating involvement of non-nitric oxide (NO) relaxation pathways in diabetes. Four weeks supplementation with alphacalcidol in DDS group significantly improved acetylcholine-induced relaxation and reduced the reliance on non-NO relaxation pathways. Conclusion: The present study suggests that impairment of acetylcholine-induced relaxation in aorta of diabetes and diabetes with vitamin D-deficient diet was largely due to a decrease in NO related pathways, and this was compensated by non-NO pathways. Supplementation with alphacalcidol alleviated endothelial impairment in aorta of diabetic rats with vitamin D-deficient diet.

Downloads

Download data is not yet available.

Article Details

How to Cite
Low, J. H., Tang, S. P., Ghulam Rasool, A. H., Asmawi, M. Z., & Mokhtar, S. S. (2024). Alphacalcidol Supplementation Improves Acetylcholine-Mediated Relaxation in Aorta of Diabetic Rats on Vitamin D-Deficient Diet. Malaysian Journal of Medicine and Health Sciences, 18(1), 250–256. Retrieved from http://mjmhsojs.upm.edu.my/index.php/mjmhs/article/view/111
Section
Original Articles

References

Dalan R, Liew H, Tan WKA, Chew DEK, Leow MKS. Vitamin D and the endothelium: basic, translational and clinical research updates. IJC Metab Endocr. 2014;4:4–17.

Sandoo A, van Zanten JJ, Metsios GS, Carroll D, Kitas GD. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;23(4):302-12.

De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front Endocrinol (Lausanne). 2018;17(9):2.

Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 2018;17(1):83.

Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267.

Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes. 2017;9(5):434-449.

Takeda Y, Matoba K, Sekiguchi K, Nagai Y, Yokota T, Utsunomiya K, et al. Endothelial Dysfunction in Diabetes. Biomedicines. 2020;8(7):182.

Goldfine AB, Beckman JA, Betensky RA, Devlin H, Hurley S, Varo N, et al. Family history of diabetes is a major determinant of endothelial function. J Am Coll Cardiol. 2006;47(12):2456–2461.

Tarcin O, Yavuz DG, Ozben B, Telli A, Ogunc AV, Yuksel M, et al. Effect of vitamin D deficiency and replacement on endothelial function in asymptomatic subjects. J Clin Endocrinol Metab. 2009;94(10):4023–4030.

Kim DH, Meza CA, Clarke H, Kim JS, Hickner RC. Vitamin D and Endothelial Function. Nutrients. 2020;12(2):575.

Napoli C, De Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro LJ. Nitric oxide and atherosclerosis: An update. Nitric Oxide Biol Chem. 2006; 15:265-279.

Andrukhova O, Slavic S, Zeitz U, Riesen SC, Heppelmann MS, Ambrisko TD, et al. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol. 2014;28(1):53-64.

Menezes AR, Lamb MC, Lavie CJ, DiNicolantonio JJ. Vitamin D and atherosclerosis. Curr Opin Cardiol. 2014;29(6):571-7.

Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, et al. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia. 2004;47(10):1727-34.

Lee WC, Mokhtar SS, Munisamy S, Yahaya S, Rasool AHG. Vitamin D status and oxidative stress in diabetes mellitus. Cell Mol Biol (Noisy-le-grand). 2018;64(7):60-69.

Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986;250(5 Pt 2):H822-7.

Labudzynskyi DO, Zaitseva OV, Latyshko NV, Gudkova OO, Veliky MM. Vitamin D3 contribution to the regulation of oxidative metabolism in the liver of diabetic mice. Ukr Biochem J. 2015;87(3):75-90.

Zhong W, Gu B, Gu Y, Groome LJ, Sun J, Wang Y. Activation of vitamin D receptor promotos VEGF and CuZn-SOD expression in endothelial cells. J Steroid Biochem Mol Biol. 2015;140:56-62.

Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL, Smits G, et al. Associations of plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentrations with death and progression to maintenance dialysis in patients with advanced kidney disease. Am J Kidney Dis. 2012;60(4):567-75.

Hough S, Fausto A, Sonn Y, Dong Jo OK, Birge SJ, Avioli LV. Vitamin D metabolism in the chronic streptozotocin-induced diabetic rats. Endocrinology. 1983;113(2):790-6.

Brandi L. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis. Dan Med Bull. 2008;55(4):186-210.

Mokhtar SS, Vanhoutte PM, Leung SW, Yusof MI, Wan Sulaiman WA, Mat Saad AZ, et al. Endothelium dependent hyperpolarization-type relaxation compensates for attenuated nitric oxide-mediated responses in subcutaneous arteries of diabetic patients. Nitric Oxide. 2016;29(53):35–44.

Mokhtar SS, Vanhoutte PM, Leung SW, Suppian R, Yusof MI, Rasool AH. Reduced nitric oxide-mediated relaxation and endothelial nitrix oxide synthase expression in the tail arteries of streptozotocin-induced diabetic rats. Eur J Pharm. 2016;773:78-84.

Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med. 2014;73:383–99.

Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res. 2017;120(4):713-735.

Luiking YC, Engelen MP, Deutz NE. Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care. 2010;13(1):97–104.

Chen DD, Chen LY, Xie JB, Shu C, Yang T, Zhou S, et al. Tetrahydrobiopterin regulation of eNOS redox function. Curr Pharm Des. 2014;20(22):3554–62.

Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res. 2011;34(6):665–673.

Chen JY, Ye ZX, Wang XF, Chang J, Yang MW, Zhong HH, et al. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed Pharmacother. 2018;97:423–8.

Bauersachs J, Popp R, Hecker M, Sauer E, Fleming I, Busse R. Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation. 1996;94(12):3341-7.

Thollon C, Fournet-Bourguignon MP, Saboureau D, Lesage L, Reure H, Vanhoutte PM, et al. Consequences of reduced production of NO on vascular reactivity of porcine coronary arteries after angioplasty: importance of EDHF. Br J Pharmacol. 2002;136(8):1153-61.

Hishinuma T, Tsukamoto H, Suzuki K, Mizugaki M. Relationship between thromboxane/prostacyclin ratio and diabetic vascular complications. Prostaglandins Leukot Essent Fatty Acids. 2001;65(4):191–6.

Atallah A, Lecarpentier E, Goffinet F, Doret-Dion M, Gaucherand P, Tsatsaris V. Aspirin for Prevention of Preeclampsia. Drugs, 2017;77(17):1819–31.

Gunawardena HP, Silva R, Sivakanesan R, Ranasinghe P, Katulanda P. Poor Glycaemic Control Is Associated with Increased Lipid Peroxidation and Glutathione Peroxidase Activity in Type 2 Diabetes Patients. Oxid Med Cell Longev. 2019:9471697.

Mokhtar SS, Wee CL, Low JH, Azemi AK, Mat Zin AA, Ab Aziz AA, et al. Vitamin D deficiency in diabetes alters the aortic media thickness but not its functional properties. Braz J Pharm Sci, 2020;56:e18042.

Wee CL, Mokhtar SS, Singh KKB, Yahaya S, Leung SWS, Rasool AHG. Calcitriol Supplementation Ameliorates Microvascular Endothelial Dysfunction in Vitamin D-Deficient Diabetic Rats by Upregulating the Vascular eNOS Protein Expression and Reducing Oxidative Stress. Oxid Med Cell Longev 2021:3109294.

Li M, Healy DR, Simmons HA, Ke HZ, Thompson DD. Alfacalcidol restores cancellous bone in ovariectomized rats. J Musculoskelet Neuronal Interact. 2003;3(1):39-46.

Shiraishi A, Takeda S, Masaki T, Higuchi Y, Uchiyama Y, Kubodera N, et al. Alfacalcidol inhibits bone resorption and stimulates formation in an ovariectomized rat model of osteoporosis: distinct actions from estrogen. J Bone Miner Res. 2000;15(4):770-9.

Mokhtar SS, Rasool AHG. Role of endothelium-dependent hyperpolarisation and prostacyclin in diabetes. Malays J Med Sci. 2015;22(2):8-17.

Shimokawa H, Godo S. Diverse functions of endothelial NO synthases system: NO and EDH. J Cardiovasc Pharmacol. 2016;67(5):361-6.