PatuhTB Mobile Application to Improve Tuberculosis Medication Adherence: A Development Process and Usability Study
Main Article Content
Abstract
Introduction: Adherence to anti-tuberculosis (TB) medication is a significant concern. Non-adherence to anti-TB medications can cause infection spread, drug-resistant infections, complications, and deaths. Despite the implementation of directly observed therapy (DOT) to improve adherence, it may lead to inconvenience and may not be as effective as intended in improving treatment outcomes. Thus, highlight the need for alternative approaches, such as digital adherence technology (DAT), which incorporate behavioral change models to enhance medication adherence and improve treatment outcomes. Therefore, the application of the health belief model (HBM) as a concept to alter an individual’s behaviour could be an effective strategy to enhance anti-TB medication adherence. This study aimed to describe the process of designing and developing a mobile application to improve TB medication adherence, and then to evaluate its usability. Materials and methods: A nominal group technique (NGT) has been employed to determine the mobile application development content. The NGT involves experts in TB care. Subsequently, a pilot study was conducted to assess the usability of the developed mobile application. The usability score was obtained using a validated questionnaire. Results: From the NGT, the mobile application should have four important features that aligned with the constructs of HBM to ensure TB medication adherence: (1) health education, (2) a reminder system, (3) video observed therapy and (4) feedback system. Subsequently, a mobile application entitled “PatuhTB” was developed, and its usability score was 77.83 (SD: 9.46). Conclusion: PatuhTB mobile application can be used as a user-friendly tool to facilitate TB medication adherence.
Downloads
Article Details
References
World Health Organization (WHO). Global Tuberculosis Report 2020 [Internet]. Geneva; 2020. 205 p. Available from: https://www.who.int/publications/i/item/9789240013131
Naidoo P, Theron G, Rangaka MX, Chihota VN, Vaughan L, Brey ZO, et al. The South African Tuberculosis Care Cascade: Estimated Losses and Methodological Challenges. J Infect Dis. 2017;216(April):S702–13. . doi:10.1093/infdis/jix335
Iribarren S, Beck S, Pearce PF, Chirico C, Etchevarria M, Cardinale D, et al. TextTB: A Mixed Method Pilot Study Evaluating Acceptance, Feasibility, and Exploring Initial Efficacy of a Text Messaging Intervention to Support TB Treatment Adherence. Tuberc Res Treat. 2013;2013:1–12. . doi:10.1155/2013/349394
Van LH, Phu PT, Vinh DN, Son VT, Hanh NT, Nhat LTH, et al. Risk factors for poor treatment outcomes of 2266 multidrug-resistant tuberculosis cases in Ho Chi Minh City: A retrospective study. BMC Infect Dis [Internet]. 2020 Feb 22 [cited 2021 Apr 6];20(1):164. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-4887-1. doi:10.1186/s12879-020-4887-1
Keng Tok PS, Liew SM, Wong LP, Razali A, Loganathan T, Chinna K, et al. Determinants of unsuccessful treatment outcomes and mortality among tuberculosis patients in Malaysia: A registry-based cohort study. PLoS One [Internet]. 2020 Apr 1 [cited 2021 Apr 30];15(4). Available from: /pmc/articles/PMC7176104/. doi:10.1371/journal.pone.0231986
Goroh MMD, Rajahram GS, Avoi R, Van Den Boogaard CHA, William T, Ralph AP, et al. Epidemiology of tuberculosis in Sabah, Malaysia, 2012-2018. Infect Dis Poverty [Internet]. 2020 Aug 26 [cited 2021 Mar 6];9(1):119. Available from: https://idpjournal.biomedcentral.com/articles/10.1186/s40249-020-00739-7. doi:10.1186/s40249-020-00739-7
Liew SM, Khoo EM, Ho BK, Lee YK, Mimi O, Fazlina MY, et al. Tuberculosis in malaysia: Predictors of treatment outcomes in a national registry. Int J Tuberc Lung Dis. 2015;19(7):764–71. . doi:10.5588/ijtld.14.0767
Karumbi J, Garner P. Directly observed therapy for treating tuberculosis [Internet]. Vol. 2015, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd; 2015 [cited 2021 Jun 13]. Available from: /pmc/articles/PMC4460720/. doi:10.1002/14651858.CD003343.pub4
Salehitali S, Noorian K, Hafizi M, Dehkordi AH. Quality of life and its effective factors in tuberculosis patients receiving directly observed treatment short-course (DOTS). J Clin Tuberc Other Mycobact Dis. 2019 May 1;15:100093. . doi:10.1016/j.jctube.2019.100093
Pradipta IS, Houtsma D, van Boven JFM, Alffenaar JWC, Hak E. Interventions to improve medication adherence in tuberculosis patients: a systematic review of randomized controlled studies. npj Prim Care Respir Med 2020 301 [Internet]. 2020 May 11 [cited 2023 Apr 10];30(1):1–10. Available from: https://www.nature.com/articles/s41533-020-0179-x. doi:10.1038/s41533-020-0179-x
McLaren ZM, Milliken AA, Meyer AJ, Sharp AR. Does directly observed therapy improve tuberculosis treatment? More evidence is needed to guide tuberculosis policy. BMC Infect Dis [Internet]. 2016 [cited 2021 Apr 30];16(1). Available from: https://pubmed.ncbi.nlm.nih.gov/27716104/. doi:10.1186/s12879-016-1862-y
Klonoff DC. Behavioral Theory: The Missing Ingredient for Digital Health Tools to Change Behavior and Increase Adherence. J Diabetes Sci Technol. 2019;13(2):276–81. . doi:10.1177/1932296818820303
Mujeeba Ashraf, Rabia Nisar Virk. Health Belief Model and Medication Adherence in Patients with HIV. J Pak Med Assoc [Internet]. 2021 Jan 30 [cited 2021 Jun 12];71(5):1–12. Available from: https://pubmed.ncbi.nlm.nih.gov/34091624/. doi:10.47391/jpma.1463
Kung PC, Yeh MC, Lai MK, Liu HE. Renal Transplant Recipients: The Factors Related to Immunosuppressive Medication Adherence Based on the Health Belief Model. J Nurs Res [Internet]. 2017 Oct 1 [cited 2021 Jun 12];25(5):392–7. Available from: https://pubmed.ncbi.nlm.nih.gov/28877127/. doi:10.1097/JNR.0000000000000181
Alatawi YM, Kavookjian J, Ekong G, Alrayees MM. The association between health beliefs and medication adherence among patients with type 2 diabetes. Res Soc Adm Pharm [Internet]. 2016 Nov 1 [cited 2021 Jun 12];12(6):914–25. Available from: https://pubmed.ncbi.nlm.nih.gov/26706405/. doi:10.1016/j.sapharm.2015.11.006
Azizi N, Karimy M, Salahshour VN. Determinants of adherence to tuberculosis treatment in Iranian patients: Application of health belief model. J Infect Dev Ctries [Internet]. 2018 Sep 1 [cited 2021 Jun 12];12(9):706–11. Available from: https://jidc.org/index.php/journal/article/view/9653. doi:10.3855/jidc.9653
Maiman LA, Becker MH. The Health Belief Model: Origins and Correlates in Psychological Theory. Heal Educ Behav. 1977;2(4):336–53. . doi:10.1177/109019817400200404
Gallagher M, Hares T, Spencer J, Bradshaw C, Webb I. The nominal group technique: A research tool for general practice? Fam Pract. 1993;10(1):76–81. . doi:10.1093/fampra/10.1.76
Marzuki MFM, Yaacob NA, Yaacob NM. Translation, cross-cultural adaptation, and validation of the Malay version of the system usability scale questionnaire for the assessment of mobile apps. J Med Internet Res. 2018;20(5):1–7. . doi:10.2196/10308
Deslandes SF, Mendes CHF, Pires T de O, Campos D de S. Use of the Nominal Group Technique and the Delphi Method to draw up evaluation indicators for strategies to deal with violence against children and adolescents in Brazil. Rev Bras Saúde Matern Infant [Internet]. 2010 [cited 2023 Apr 16];10(SUPPL. 1):s29–37. Available from: http://www.scielo.br/j/rbsmi/a/dyct3VC3RWxr6LH9Nz9dvnB/?lang=en. doi:10.1590/S1519-38292010000500003
Fazeli Sazali M, Sharizman Syed Abdul Rahim S, BCh BAO M, Hazim Mohammad A, Kadir F, Oliver Payus A, et al. Improving Tuberculosis Medication Adherence: The Potential of Integrating Digital Technology and Health Belief Model. Tuberc Respir Dis (Seoul) [Internet]. 2022 Dec 23 [cited 2023 Apr 11];86(2):82–93. Available from: http://e-trd.org/journal/view.php?doi=10.4046/trd.2022.0148. doi:10.4046/TRD.2022.0148
Müller AM, Osório CS, Silva DR, Sbruzzi G, De Tarso Roth Dalcin P. Interventions to improve adherence to tuberculosis treatment: systematic review and meta-analysis. Int J Tuberc Lung Dis. 2018 Jul 1;22(7):731–40. . doi:10.5588/IJTLD.17.0596
Garfein RS, Liu L, Cuevas-Mota J, Collins K, Muñoz F, Catanzaro DG, et al. Tuberculosis treatment monitoring by video directly observed therapy in 5 health districts, California, USA. Emerg Infect Dis [Internet]. 2018 Oct 1 [cited 2021 Jun 13];24(10):1806–15. Available from: https://pubmed.ncbi.nlm.nih.gov/30226154/. doi:10.3201/eid2410.180459
Guo P, Qiao W, Sun Y, Liu F, Wang C. Telemedicine technologies and tuberculosis management: A randomized controlled trial. Telemed e-Health [Internet]. 2020 Sep 1 [cited 2021 Jun 13];26(9):1150–6. Available from: https://www.liebertpub.com/doi/abs/10.1089/tmj.2019.0190. doi:10.1089/tmj.2019.0190
Story A, Aldridge RW, Smith CM, Garber E, Hall J, Ferenando G, et al. Smartphone-enabled video-observed versus directly observed treatment for tuberculosis: a multicentre, analyst-blinded, randomised, controlled superiority trial. Lancet. 2019 Mar 23;393(10177):1216–24. . doi:10.1016/S0140-6736(18)32993-3
Nureylia Amir P, Fazeli Bin Sazali M, Salvaraji L, Dulajis N, Sharizman Syed Abdul Rahim S, Avoi R. Public Health Informatics in Global Health Surveillance: A Review. Borneo Epidemiol J [Internet]. 2021 Dec 29 [cited 2022 Mar 15];2(2):74–88. Available from: https://jurcon.ums.edu.my/ojums/index.php/bej/article/view/3628. doi:10.51200/BEJ.V2I2.3628
Manyazewal T, Woldeamanuel Y, Fekadu A, Holland DP, Marconi VC. Effect of Digital Medication Event Reminder and Monitor-Observed Therapy vs Standard Directly Observed Therapy on Health-Related Quality of Life and Catastrophic Costs in Patients With Tuberculosis: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open [Internet]. 2022 Sep 1 [cited 2023 Apr 13];5(9):e2230509–e2230509. Available from: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2796280. doi:10.1001/JAMANETWORKOPEN.2022.30509
Mohamad Marzuki MF, Yaacob NA, bin Yaacob NM, Abu Hassan MR, Ahmad SB. Usable Mobile App for Community Education on Colorectal Cancer: Development Process and Usability Study. JMIR Hum Factors. 2019;6(2):e12103. . doi:10.2196/12103