Ethyl Acetate Extract of Pereskia bleo Leaves Enhances Natural Killer Cells Activation and Cytotoxicity Against Cervical Cancer HeLa Cells

Main Article Content

Siti Farhanah Mohd Salleh
Norzila Ismail
Mazni Yusoff
Siew Hua Gan
Wan Suriyani Wan Ibrahim
Jamaruddin Mat Asan
Maria E. Sarmiento
Armando Acosta

Abstract

Introduction: The leaves of Pereskia bleo (P. bleo) have been traditionally used to treat cancer and other ailments. Previously, we reported that the ethyl acetate extract of P. bleo leaves (PBEA) induced cervical cancer cells (HeLa) death via cell cycle arrest and apoptosis. Considering the importance of NK cells in tumour control, in this study, the immunostimulatory effect of PBEA on NK cells, as a potential additional antitumor effect was evaluated. Materials and methods: Human NK cells were exposed to different concentrations of PBEA (1 – 200 μg/ml) and its proliferation rate was determined via MTT assay. NK cells from three healthy individuals and three cervical cancer patients were treated with 14.4 μg/mL of PBEA and co-cultured with HeLa cells for 24h to evaluate its cytotoxic activity. Target cells death was assessed by flow cytometry while ELISA was performed to determine the production of perforin, granzyme B, IFN-γ and IL-2. Results: The proliferation rate of NK cells at 24h was significantly (p<0.05) increased compared to 48h and 72h of PBEA treatment. Apoptosis of HeLa cells was markedly increased in PBEA treated NK cells from cancer patients. This extract also significantly (p<0.05) enhanced granzyme B and IFN-γ expression in NK cells from cancer patients. Conclusion: Our findings indicated that PBEA can stimulate the activation of NK cells from cancer patients and enhance its cytotoxic effect against HeLa cells.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mohd Salleh, S. F., Ismail, N., Yusoff, M., Gan, S. H., Wan Ibrahim, W. S., Mat Asan, J., E. Sarmiento, M., & Acosta, A. (2024). Ethyl Acetate Extract of Pereskia bleo Leaves Enhances Natural Killer Cells Activation and Cytotoxicity Against Cervical Cancer HeLa Cells. Malaysian Journal of Medicine and Health Sciences, 20(5), 120–129. https://doi.org/10.47836/mjmhs20.5.17
Section
Original Articles

References

Reina-Campos M, Scharping NE, Goldrath AW. CD8+ T cell metabolism in infection and cancer. Nature Reviews Immunology. 2021;21(11):718-738. doi: 10.1038/s41577-021-00537-8

Saleh R, Elkord E. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. InSeminars in Cancer Biology. 2020;65:13-27. doi: https://doi.org/10.1016/j.semcancer.2019.07.017

Vijayan V. Mohapatra A, Uthaman S, Park IK. Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics. 2019;11(10). doi: 10.3390/pharmaceutics11100534

Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and tumor progression. Nature Immunology. 2021;22(5):560-570. doi: 10.1038/s41590-021-00899-0

Fraser A, Poole P. Immunostimulants versus placebo for preventing exacerbations in adults with chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2019; 2019:5. doi: 10.1002/14651858.CD013343.pub2

Yu T, Nie W, Hong Z, He Y, Chen J, Mi X, et al. Synergy of immunostimulatory genetherapy with immune checkpoint blockade mptivates immune response to eliminate cancer. Advanced Fucntrional Material. 2021;31(22):2100715. doi: https://doi.org/10.1002/adfm.202100715

Krijgsman D, de Vries NL, Skovbo A, Anderson MN, Swers M, Bastiaannet E, et al. Characterization of circulating T-, NK-, and NKT cell subsets in patients with colorectal cancer: the peripheral blood immune cell profile. Cancer Immunology, Immunotherapy; 2019:1(16):1011-1024. doi: 10.1007/s00262-019-02343-7

Tarazona R, Lopez-Sejas N, Guerrero B, Hassouneh F, Valhondo I, Pera A, et al. Current progress in NK cell biology and NK cell-based cancer immunotherapy. Cancer Immunology, Immunotherapy; 2020:69:879-899. doi: 10.1007/s00262-020-02532-9

Hoogstad-van Evert JS, Bekkers R, Ottevanger N, Jansen JH, Massuger L, Dolstra H. Harnessing natural killer cells for the treatment of ovarian cancer. Gynecologic Oncology. 2020;157(3):810-816. doi: https://doi.org/10.1016/j.ygyno.2020.03.020

Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. Journal of Leukocyte Biology. 2019;105(6):1319-1329. doi: 10.1002/JLB.MR0718-269R

Anggraeni TD, Rustamadji P, Aziz MF. Fas ligand (FasL) in association with tumor-infiltrating lymphocytes (TILs) in early stage cervical cancer. Asian Pacific Journal of Cancer Prevention. 2020;21(3):831. doi: 10.31557/APJCP.2020.21.3.831

Gauthier M, Laroye C, Bensoussan D, Boura C, Decot V. Natural Killer cells and monoclonal antibodies: Two partners for successful antibody dependent cytotoxicity against tumor cells. Critical Reviews in Oncology/Hematology. 2021;160:103261. doi: https://doi.org/10.1016/j.critrevonc.2021.103261

Laskowski TJ, Biederstädt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy. Nature Reviews Cancer. 2022;22(10):557-75. doi: 10.1038/s41568-022-00491-0

Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-gamma and IL-12. Immunity. 2018; 49(6):1148-1161. doi: 10.1016/j.immuni.2018.09.024

Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017; 168:707-723. doi: 10.1016/j.cell.2017.01.017

Surayot U, You S. Structural effects of sulfated polysaccharides from Codium fragile on NK cell activation and cytotoxicity. International Jornal of Biological Macromolecules. 2017; 98:117-124. doi: https://doi.org/10.1016/j.ijbiomac.2017.01.108

Eskandari SK, Sulkaj I, Melo MB, Li N, Allos H, Alhaddad JB, et al. Regulatory T cells engineered with TCR signaling–responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Science Translational Medicine. 2020;12(569). doi: 10.1126/scitranslmed.aaw4744

Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharmaceutica Sinica B. 2022;12(3):1163-1185. doi: 10.1016/j.apsb.2021.08.020

Shabsoug B, Khalil R, Abuharfeil N. Enhancement of natural killer cell activity in vitro against human tumor cells by some plants from Jordan. Journal of Immunotoxicology. 2008; 5:279-285. doi: 10.1080/15376510802312027

Nagahama K, Eto N, Shimojo T, Kondoh T, Nakahara K, Sakakibara Y, et al. Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo. Bioscience, Biotechnology, and Biochemistry. 2015; 79:1327-36. doi: https://doi.org/10.1080/09168451.2015.1025033

Barisone GA, O’donnell RT, Ma Y, Abuhay MW, Lundeberg K, Gowda S, et al. A purified, fermented, extract of Triticum aestivum has lymphomacidal activity mediated via natural killer cell activation. PloS one. 2018; 13(1): e0190860. doi: https://doi.org/10.1371/journal.pone.0190860. doi 10.1002/jcp.22043

Lu CC, Chen JK. Resveratrol enhances perforin expression and NK cell cytotoxicity through NKG2D‐dependent pathways. Journal of Cellular Physiology. 2010; 223(2):343-351.

Malek SN, Shin SK, Wahab NA, Yaacob H. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Molecules. 2009; 14:1713-724. doi: 10.3390/molecules14051713

Sri N, Norhanom AW, Hashim Y, Shin S, Lai H, Serm L, Rahman SN. Cytotoxic activity of Pereskia bleo (Cactaceae) against selected human cell lines. International Journal of Cancer Research (USA). 2008; 6(3):180-187. doi: 10.3923/ijcr.2008.20.27

Tan ML, Sulaiman SF, Najimuddin N, Samian MR, Muhammad TT. Methanolic extract of Pereskia bleo (Kunth) DC (Cactaceae) induces apoptosis in breast carcinoma, T47-D cell line. Journal of Ethnopharmacology. 2005; 96(-2):287-294. doi: https://doi.org/10.1016/j.jep.2004.09.025

Mohd-Salleh SF, Wan-Ibrahim WS, Ismail N. Pereskia bleo Leaves Extract Induces Cell Death via Cell Cycle Arrest and Apoptosis in Cervical Cancer Cells HeLa. Nutrition and Cancer. 2020; 72:826-834. doi: 10.1080/01635581.2019.1654530

Manosroi A, Saraphanchotiwitthaya A, Manosroi J. Immunomodulatory activities of Clausena excavate Burm. f. wood extracts. Journal of Ethnopharmacology. 2003;89(1):155-160. doi: 10.1016/s0378-8741(03)00278-2

Habif G, Crinier A, Andre P, Vivier E, Narni-Mancinelli E. Targeting natural killer cells in solid tumors. Cellular & Molecular Immunology. 2019; 16(5):415-422. doi: 10.1038/s41423-019-0224-2

Nayyar G, Chu Y, Cairo MS. Overcoming Resistance to Natural Killer Cell Based Immunotherapies for Solid Tumors. Frontiers in Oncology. 2019; 9:51. doi: 10.3389/fonc.2019.00051

Garcia-Iglesias T, Del Toro-Arreola A, Albarran-Somoza B, Del Toro-Arreola S, Sanchez-Hernandez PE, Ramirez-Duenas MG, et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer. 2009; 9(186):1-8. doi: 10.1186/1471-2407-9-186

Huldani H, Rashid AI, Turaev KN, Opulencia MJ, Abdelbasset WK, Bokov DO, et al. Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Communication and Signaling. 2022;20(1):167. https://doi.org/10.1186/s12964-022-00972-7

Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: A review. Critical Review in Food Science and Nutrition. 2018; 58:1428-1447. https://doi.org/10.1080/10408398.2016.1263597

Srisawat T, Chumkaew P, Heed-Chim W, Sukpondma Y, Kanokwiroon K. Phytochemical screening and cytotoxicity of crude extracts of Vatica diospyroides symington type LS. Tropical Journal of Pharmaceutical Research. 2013;12(1):71-6. https://doi.org/10.4314/tjpr.v12i1.12

Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nature reviews Drug discovery. 2020;19(3):200-18. https://doi.org/10.1038/s41573-019-0052-1

Yeap SK, Omar AR, Ho WY, Beh BK, Ali AM, Alitheen NB. Rhaphidophora korthalsii modulates peripheral blood natural killer cell proliferation, cytokine secretion and cytotoxicity. BMC Complementary and Alternative Medicine. 2013; 13(1):1-10. https://doi.org/10.1186/1472-6882-13-145

Anft M, Netter P, Urlaub D, Prager I, Schaffner S, Watzl C. NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cellular & Molecular Immunology. 2020;17(4):347-355. https://doi.org/10.1038/s41423-019-0277-2

Backes CS, Friedmann KS, Mang S, Knorck A, Hoth M, Kummerow C. Natural killer cells induce distinct modes of cancer cell death: Discrimination, quantification, and modulation of apoptosis, necrosis, and mixed forms. The Journal of Biological Chemistry. 2018; 293(42):16348-16363. DOI 10.1074/jbc.RA118.004549

Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Experimental & Molecular Medicine. 2015; 47: e141. https://doi.org/10.1038/emm.2014.114

Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annual Review of Immunology. 2013; 31:227-258. https://doi.org/10.1146/annurev-immunol-020711-075005

Zhang X, Wei H, Chen Q, Tian Z. Activation of human natural killer cells by recombinant membrane-expressed fractalkine on the surface of tumor cells. Oncology Reports. 2007; 17:1371-1375. https://doi.org/10.3892/or.17.6.1371

Bald T, Krummel MF, Smyth MJ, Barry KC. The NK cell–cancer cycle: advances and new challenges in NK cell–based immunotherapies. Nature Immunology. 2020;21(8):8358-47. https://doi.org/10.1038/s41590-020-0728-z

Gang M, Wong P, Berrien-Elliott MM, Fehniger TA. Memory-like natural killer cells for cancer immunotherapy. InSeminars in Hematology. 2020;57(4):185-193. https://doi.org/10.1053/j.seminhematol.2020.11.003

Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A. Sustained effector function of IL-12/15/18–preactivated NK cells against established tumors. The Journal of Experimental Medicine. 2012; 209:2351-2365.

Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, et al. Cytokine activation induces human memory-like NK cells. Blood.2012; 120:4751-60.

Majewska-Szczepanik M, Paust S, Von Andrian UH, Askenase PW, Szczepanik M. Natural killer cell-mediated contact sensitivity develops rapidly and depends on interferon-alpha, interferon-gamma and interleukin-12. Immunology. 2013; 140(1):98-110. https://doi.org/10.1111/imm.12120

Floros T, Tarhini AA. Anticancer cytokines: biology and clinical effects of interferon-α2, interleukin (IL)-2, IL-15, IL-21, and IL-12. Seminars in Oncology. 2015; 42(4):539-548. https://doi.org/10.1053/j.seminoncol.2015.05.015

Srivastava S, Pelloso D, Feng H, Voiles L, Lewis D, Haskova Z, et al. Effects of interleukin-18 on natural killer cells: costimulation of activation through Fc receptors for immunoglobulin. Cancer Immunology, Immunotherapy:CII. 2013; 62:1073-1082. https://doi.org/10.1007/s00262-013-1403-0

Wilson NS. Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunology. 2009; 10:348. https://doi.org/10.1038/ni.1714

Volpin V, Michels T, Sorrentino A, Menevse AN, Knoll G, Ditz M, et al. CAMK1D Triggers Immune Resistance of Human Tumor Cells Refractory to Anti–PD-L1 Treatment. Cancer Immunology Research. 2020;8(9):1163-1179. https://doi.org/10.1158/2326-6066.CIR-19-0608

Prager I, Liesche C, Van Ooijen H, Urlaub D, Verron Q, Sandström N, et al. NK cells switch from granzyme B to death receptor–mediated cytotoxicity during serial killing. The Journal of Experimental Medicine. 2019; 216:2113-2127.