Evaluation Methodologies for Wireless Outdoor Air Monitor Using Low-cost Sensors: Field testing and end-user perspective
Main Article Content
Abstract
With increasing concerns about the impact of outdoor air quality on public health, demand rises for cost-effective, scalable air monitoring solutions. Low-cost sensors offer promise for monitoring outdoor air quality, with potential for widespread deployment. This article presents a comprehensive evaluation methodology for these sensors, focusing on real-world outdoor performance and end-user perspectives. Relevant methodologies for evaluating wireless air monitor with low-cost sensors were sourced from databases. The study outlines rigorous field-testing methodology, addressing sensor accuracy and stability tested in diverse environmental conditions under various climatic and geographical scenarios. This study explores end-user perspectives ensuring data relevance. This research contributes to discourse on low-cost sensor use, emphasizing a comprehensive evaluation framework encompassing technical performance, usability testing, and user perspectives. Insights gained can guide reliable, user-centric air monitoring solutions, enhancing our ability to mitigate health risks from outdoor air pollution.
Downloads
Article Details
References
Snyder, E., Watkins, T., Solomon, P., Thoma, E., Rt, W., Hagler, G., … & Preuß, P. (2013). The changing paradigm of air pollution monitoring. Environmental Science & Technology, 47(20), 11369-11377. https://doi.org/10.1021/es4022602
Karagulian, F., Maurizio, B., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., … & Annette, B. (2019). Review of the performance of low-cost sensors for air quality monitoring. Atmosphere, 10(9), 506. https://doi.org/10.3390/atmos10090506
Velasco, A., Ferrero, R., Gandino, F., Montrucchio, B., & Rebaudengo, M. (2016). A mobile and low-cost system for environmental monitoring: a case study. Sensors, 16(5), 710. https://doi.org/10.3390/s16050710
Kim, S., Park, Y., & Ackerman, M. (2021). Designing an indoor air quality monitoring app for asthma management in children: user-centered design approach. Jmir Formative Research, 5(9), e27447. https://doi.org/10.2196/27447
Concas, F., Mineraud, J., Lagerspetz, E., Varjonen, S., Liu, X., Puolamäki, K., … & Tarkoma, S. (2021). Low-cost outdoor air quality monitoring and sensor calibration. Acm Transactions on Sensor Networks, 17(2), 1-44. https://doi.org/10.1145/3446005
Lewis, A. C., Lee, J. D., Edwards, P. M., Shaw, M. D., Evans, M. J., Moller, S. J., ... & Heard, D. E. (2018). Evaluating the performance of low cost chemical sensors for air pollution research. Faraday Discussions, 200, 621-637. https://doi.org/10.1039/C5FD00201J
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., ... & Bartonova, A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?. Environment international, 99, 293-302. https://doi.org/10.1016/j.envint.2016.12.007
USEPA. (2018). Air Sensor Toolbox for Citizen Scientists, Researchers, and Developers. United States Environmental Protection Agency. Retrieved from https://www.epa.gov/air-sensor-toolbox.
Pacheco, F. S., & Alvim-Ferraz, M. C. (2017). Air Quality Monitoring Networks: A Review. Atmospheric Pollution Research, 8(4), 590-603. doi:10.1016/j.apr.2016.12.004
Simo, A., Dzitac, S., Frigura-Iliasa, F. M., Musuroi, S., Andea, P., & Meianu, D. (2020). Technical solution for a real-time air quality monitoring system. International journal of computers communications & control, 15(4). 10.15837/ijccc.2020.4.3891
Tian, B., Hou, K., Diao, X., Shi, H., Zhou, H., & Wang, W. (2019). Environment-adaptive calibration system for outdoor low-cost electrochemical gas sensors. IEEE Access, 7, 62592-62605. https://doi.org/10.1109/access.2019.2916826
Fierz, M., & Fuhrer, O. (2019). Developing a Low-Cost Air Quality Monitoring Network using Community-led Science: A Case Study in Arsenal, London. Sensors, 19(21), 4611. doi:10.3390/s19214611
Rebeiro-Hargrave, A., Fung, P., Varjonen, S., Huertas, A., Sillanpää, S., Luoma, K., … & Tarkoma, S. (2021). City wide participatory sensing of air quality. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.773778
Macis, S., Loi, D., Ulgheri, A., Pani, D., Solinas, G., Manna, S., … & Raffo, L. (2020). Design and usability assessment of a multi-device soa-based telecare framework for the elderly. Ieee Journal of Biomedical and Health Informatics, 24(1), 268-279. https://doi.org/10.1109/jbhi.2019.2894552
Xiong, J., Acemyan, C. Z., & Kortum, P. (2020). SUSapp: A Free Mobile Application That Makes the System Usability Scale (SUS) Easier to Administer. Journal of Usability Studies, 15(3).
Miraz, M. H., Ali, M., & Excell, P. S. (2021). Adaptive user interfaces and universal usability through plasticity of user interface design. Computer Science Review, 40, 100363. https://doi.org/10.1016/j.cosrev.2021.100363
Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., & Martin, R. (2017). Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environmental Pollution, 221, 491-500. 10.1016/j.envpol.2016.12.039
Zikova, N., Hopke, P. K., & Ferro, A. R. (2017). Impact of using low-cost sensors for characterizing particle mass concentrations in a regulatory monitoring network. Atmospheric Environment, 154, 164-173. https://doi.org/10.3390/atmos13101554
Johnson, K. K., Bergin, M. H., Russell, A. G., & Hagler, G. S. (2016). Using low cost sensors to measure ambient particulate matter concentrations and on road emissions factors. Atmospheric Measurement Techniques Discussions, 1-22. https://doi.org/10.5194/amt-2015-331, 2016
Dixit, E., & Jindal, Dr. V. (2020). An Effective Energy and Robust Routing Methods for Air Pollution Data Monitoring in WSN. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 5, pp. 1682–1689). Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP. https://doi.org/10.35940/ijrte.e6234.018520
He, Z., & Ruan, X. (2022). Research on indoor air monitoring system based on STM32. Academic Journal of Engineering and Technology Science, 5(7), 46-52. DOI: 10.25236/AJETS.2022.050708
Yin, F. (2022). Practice of air environment quality monitoring data visualization technology based on adaptive wireless sensor networks. Wireless Communications and Mobile Computing, 2022, 1-12. https://doi.org/10.1155/2022/4160186
Chang, B., Zhang, X., & Mingxin, J. (2018). Design of multi-parameter monitoring system for indoor air quality based on wireless sensor network. In International Information and Engineering Association. Proceedings of 2018 7th International Conference on Advanced Materials and Computer Science (ICAMCS 2018). https://doi.org/10.3390%2Fijerph17144942
Pech, M., Vrchota, J., & Bednář, J. (2021). Predictive maintenance and intelligent sensors in smart factory. Sensors, 21(4), 1470. https://doi.org/10.3390/s21041470
Trasviña-Moreno, C., Blasco, R., Marco, Á., Casas, R., & Trasviña-Castro, A. (2017). Unmanned aerial vehicle based wireless sensor network for marine-coastal environment monitoring. Sensors, 17(3), 460. https://doi.org/10.3390/s17030460
Tuğtekin, E. B. (2021). Development of the learning management systems evaluation scale based on transactional distance theory. Journal of Educational Technology and Online Learning, 4(3), 503-515. http://doi.org/10.31681/jetol.943335
Abulfaraj, A., & Steele, A. (2020, July). Detailed usability heuristics: a breakdown of usability heuristics to enhance comprehension for novice evaluators. In International Conference on Human-Computer Interaction (pp. 3-18). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-60114-0_1
Ivanović, M. I. R. J. A. N. A., MILICEVIĆ, A. K., Ganzha, M., BĂDICĂ, A., Paprzycki, M., & BĂDICĂ, C. (2018). Usability and quality parameters for e-learning environments and systems. In CEUR Workshop Proceedings. CEUR.
Kart, Ö., Mevsim, V., Kut, A., Yürek, İ., Altın, A. Ö., & Yılmaz, O. (2017). A mobile and web-based clinical decision support and monitoring system for diabetes mellitus patients in primary care: a study protocol for a randomized controlled trial. BMC medical informatics and decision making, 17(1), 1-10. https://doi.org/10.1186/s12911-017-0558-6
Barnum, C. M. (2020). Usability testing essentials: Ready, set... test!. Morgan Kaufmann.
Niranjanamurthy, M., Nagaraj, A., Gattu, H., & Shetty, P. K. (2014). Research study on importance of usability testing/User Experience (UX) testing. International Journal of Computer Science and Mobile Computing, 3(10), 78-85.
Nouman, N., & Umer, A. (2019, May). Web navigation and usability analysis of educational websites in Pakistan. In 2019 Seventh International Conference on Digital Information Processing and Communications (ICDIPC) (pp. 57-62). IEEE. http://dx.doi.org/10.1109/ICDIPC.2019.8723704
Mohamad Jamil, P. A. S., Karuppiah, K., Mohammad Yusof, N. A. D., Mohd Suadi Nata, D. H., Abdul Aziz, N., How, V., ... & Naeni, H. S. (2022). Usability testing of a wireless individual indicator system application: Monitoring exposure to outdoor air pollution among Malaysian Traffic Police. Digital Health, 8, 20552076221103336. https://doi.org/10.1177/20552076221103336
Assila, A., & Ezzedine, H. (2016). Standardized usability questionnaires: Features and quality focus. Electronic Journal of Computer Science and Information Technology, 6(1).
Kortum, P., & Oswald, F. L. (2018). The impact of personality on the subjective assessment of usability. International Journal of Human–Computer Interaction, 34(2), 177-186. https://doi.org/10.1080/10447318.2017.1336317
Lee, B., Lee, J., Cho, Y., Shin, Y., Oh, C., Park, H., & Kim, H. K. (2023). Visualisation of Information Using Patient Journey Maps for a Mobile Health Application. Applied Sciences, 13(10), 6067. https://doi.org/10.3390/app13106067
Rotaru, O. A., Vert, S., Vasiu, R., & Andone, D. (2020, October). Standardised questionnaires in usability evaluation. applying standardised usability questionnaires in digital products evaluation. In International Conference on Information and Software Technologies (pp. 39-48). Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-59506-7_4
Esteve, S., Forkey, D., & Clark, S. (2021, June). Human Factors Testing Sample Size Requirements: Is it Time to Reevaluate?. In Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care (Vol. 10, No. 1, pp. 243-246). Sage CA: Los Angeles, CA: SAGE Publications. http://dx.doi.org/10.1177/2327857921101178
Nielsen, J. (10). Usability heuristics for user interface design.
Lewis, J. R., & Sauro, J. (2021). Usability and user experience: Design and evaluation. Handbook of Human Factors and Ergonomics, 972-1015.
Lah, U., Lewis, J. R., & Šumak, B. (2020). Perceived usability and the modified technology acceptance model. International Journal of Human–Computer Interaction, 36(13), 1216-1230. http://dx.doi.org/10.1080/10447318.2020.1727262
Lewis, J. R. (2018). Measuring perceived usability: The CSUQ, SUS, and UMUX. International Journal of Human–Computer Interaction, 34(12), 1148-1156. https://doi.org/10.1080/10447318.2017.1418805
Mohamad Jamil, P. A. S., Mohammad Yusof, N. A. D., Karuppiah, K., Rasdi, I., How, V., Mohd Tamrin, S. B., ... & Almutairi, N. S. (2023). Concept development and field testing of wireless outdoor indicator system for use in monitoring exposures at work among Malaysian traffic police. Toxics, 11(4),385. https://doi.org/10.3390/toxics11040385