Evaluation Methodologies for Wireless Outdoor Air Monitor Using Low-cost Sensors: Field testing and end-user perspective

Main Article Content

Nur Athirah Diyana Mohammad Yusof
Putri Anis Syahira Mohamad Jamil
Dayana Hazwani Mohd Suadi Nata
Muhammad Hasnolhadi Samsudin

Abstract

With increasing concerns about the impact of outdoor air quality on public health, demand rises for cost-effective, scalable air monitoring solutions. Low-cost sensors offer promise for monitoring outdoor air quality, with potential for widespread deployment. This article presents a comprehensive evaluation methodology for these sensors, focusing on real-world outdoor performance and end-user perspectives. Relevant methodologies for evaluating wireless air monitor with low-cost sensors were sourced from databases. The study outlines rigorous field-testing methodology, addressing sensor accuracy and stability tested in diverse environmental conditions under various climatic and geographical scenarios. This study explores end-user perspectives ensuring data relevance. This research contributes to discourse on low-cost sensor use, emphasizing a comprehensive evaluation framework encompassing technical performance, usability testing, and user perspectives. Insights gained can guide reliable, user-centric air monitoring solutions, enhancing our ability to mitigate health risks from outdoor air pollution.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mohammad Yusof, N. A. D., Mohamad Jamil, P. A. S., Mohd Suadi Nata, D. H., & Samsudin, M. H. (2024). Evaluation Methodologies for Wireless Outdoor Air Monitor Using Low-cost Sensors: Field testing and end-user perspective. Malaysian Journal of Medicine and Health Sciences, 20(5), 328–335. https://doi.org/10.47836/mjmhs20.5.39
Section
Review Article

References

Snyder, E., Watkins, T., Solomon, P., Thoma, E., Rt, W., Hagler, G., … & Preuß, P. (2013). The changing paradigm of air pollution monitoring. Environmental Science & Technology, 47(20), 11369-11377. https://doi.org/10.1021/es4022602

Karagulian, F., Maurizio, B., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., … & Annette, B. (2019). Review of the performance of low-cost sensors for air quality monitoring. Atmosphere, 10(9), 506. https://doi.org/10.3390/atmos10090506

Velasco, A., Ferrero, R., Gandino, F., Montrucchio, B., & Rebaudengo, M. (2016). A mobile and low-cost system for environmental monitoring: a case study. Sensors, 16(5), 710. https://doi.org/10.3390/s16050710

Kim, S., Park, Y., & Ackerman, M. (2021). Designing an indoor air quality monitoring app for asthma management in children: user-centered design approach. Jmir Formative Research, 5(9), e27447. https://doi.org/10.2196/27447

Concas, F., Mineraud, J., Lagerspetz, E., Varjonen, S., Liu, X., Puolamäki, K., … & Tarkoma, S. (2021). Low-cost outdoor air quality monitoring and sensor calibration. Acm Transactions on Sensor Networks, 17(2), 1-44. https://doi.org/10.1145/3446005

Lewis, A. C., Lee, J. D., Edwards, P. M., Shaw, M. D., Evans, M. J., Moller, S. J., ... & Heard, D. E. (2018). Evaluating the performance of low cost chemical sensors for air pollution research. Faraday Discussions, 200, 621-637. https://doi.org/10.1039/C5FD00201J

Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., ... & Bartonova, A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?. Environment international, 99, 293-302. https://doi.org/10.1016/j.envint.2016.12.007

USEPA. (2018). Air Sensor Toolbox for Citizen Scientists, Researchers, and Developers. United States Environmental Protection Agency. Retrieved from https://www.epa.gov/air-sensor-toolbox.

Pacheco, F. S., & Alvim-Ferraz, M. C. (2017). Air Quality Monitoring Networks: A Review. Atmospheric Pollution Research, 8(4), 590-603. doi:10.1016/j.apr.2016.12.004

Simo, A., Dzitac, S., Frigura-Iliasa, F. M., Musuroi, S., Andea, P., & Meianu, D. (2020). Technical solution for a real-time air quality monitoring system. International journal of computers communications & control, 15(4). 10.15837/ijccc.2020.4.3891

Tian, B., Hou, K., Diao, X., Shi, H., Zhou, H., & Wang, W. (2019). Environment-adaptive calibration system for outdoor low-cost electrochemical gas sensors. IEEE Access, 7, 62592-62605. https://doi.org/10.1109/access.2019.2916826

Fierz, M., & Fuhrer, O. (2019). Developing a Low-Cost Air Quality Monitoring Network using Community-led Science: A Case Study in Arsenal, London. Sensors, 19(21), 4611. doi:10.3390/s19214611

Rebeiro-Hargrave, A., Fung, P., Varjonen, S., Huertas, A., Sillanpää, S., Luoma, K., … & Tarkoma, S. (2021). City wide participatory sensing of air quality. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.773778

Macis, S., Loi, D., Ulgheri, A., Pani, D., Solinas, G., Manna, S., … & Raffo, L. (2020). Design and usability assessment of a multi-device soa-based telecare framework for the elderly. Ieee Journal of Biomedical and Health Informatics, 24(1), 268-279. https://doi.org/10.1109/jbhi.2019.2894552

Xiong, J., Acemyan, C. Z., & Kortum, P. (2020). SUSapp: A Free Mobile Application That Makes the System Usability Scale (SUS) Easier to Administer. Journal of Usability Studies, 15(3).

Miraz, M. H., Ali, M., & Excell, P. S. (2021). Adaptive user interfaces and universal usability through plasticity of user interface design. Computer Science Review, 40, 100363. https://doi.org/10.1016/j.cosrev.2021.100363

Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., & Martin, R. (2017). Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environmental Pollution, 221, 491-500. 10.1016/j.envpol.2016.12.039

Zikova, N., Hopke, P. K., & Ferro, A. R. (2017). Impact of using low-cost sensors for characterizing particle mass concentrations in a regulatory monitoring network. Atmospheric Environment, 154, 164-173. https://doi.org/10.3390/atmos13101554

Johnson, K. K., Bergin, M. H., Russell, A. G., & Hagler, G. S. (2016). Using low cost sensors to measure ambient particulate matter concentrations and on road emissions factors. Atmospheric Measurement Techniques Discussions, 1-22. https://doi.org/10.5194/amt-2015-331, 2016

Dixit, E., & Jindal, Dr. V. (2020). An Effective Energy and Robust Routing Methods for Air Pollution Data Monitoring in WSN. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 5, pp. 1682–1689). Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP. https://doi.org/10.35940/ijrte.e6234.018520

He, Z., & Ruan, X. (2022). Research on indoor air monitoring system based on STM32. Academic Journal of Engineering and Technology Science, 5(7), 46-52. DOI: 10.25236/AJETS.2022.050708

Yin, F. (2022). Practice of air environment quality monitoring data visualization technology based on adaptive wireless sensor networks. Wireless Communications and Mobile Computing, 2022, 1-12. https://doi.org/10.1155/2022/4160186

Chang, B., Zhang, X., & Mingxin, J. (2018). Design of multi-parameter monitoring system for indoor air quality based on wireless sensor network. In International Information and Engineering Association. Proceedings of 2018 7th International Conference on Advanced Materials and Computer Science (ICAMCS 2018). https://doi.org/10.3390%2Fijerph17144942

Pech, M., Vrchota, J., & Bednář, J. (2021). Predictive maintenance and intelligent sensors in smart factory. Sensors, 21(4), 1470. https://doi.org/10.3390/s21041470

Trasviña-Moreno, C., Blasco, R., Marco, Á., Casas, R., & Trasviña-Castro, A. (2017). Unmanned aerial vehicle based wireless sensor network for marine-coastal environment monitoring. Sensors, 17(3), 460. https://doi.org/10.3390/s17030460

Tuğtekin, E. B. (2021). Development of the learning management systems evaluation scale based on transactional distance theory. Journal of Educational Technology and Online Learning, 4(3), 503-515. http://doi.org/10.31681/jetol.943335

Abulfaraj, A., & Steele, A. (2020, July). Detailed usability heuristics: a breakdown of usability heuristics to enhance comprehension for novice evaluators. In International Conference on Human-Computer Interaction (pp. 3-18). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-60114-0_1

Ivanović, M. I. R. J. A. N. A., MILICEVIĆ, A. K., Ganzha, M., BĂDICĂ, A., Paprzycki, M., & BĂDICĂ, C. (2018). Usability and quality parameters for e-learning environments and systems. In CEUR Workshop Proceedings. CEUR.

Kart, Ö., Mevsim, V., Kut, A., Yürek, İ., Altın, A. Ö., & Yılmaz, O. (2017). A mobile and web-based clinical decision support and monitoring system for diabetes mellitus patients in primary care: a study protocol for a randomized controlled trial. BMC medical informatics and decision making, 17(1), 1-10. https://doi.org/10.1186/s12911-017-0558-6

Barnum, C. M. (2020). Usability testing essentials: Ready, set... test!. Morgan Kaufmann.

Niranjanamurthy, M., Nagaraj, A., Gattu, H., & Shetty, P. K. (2014). Research study on importance of usability testing/User Experience (UX) testing. International Journal of Computer Science and Mobile Computing, 3(10), 78-85.

Nouman, N., & Umer, A. (2019, May). Web navigation and usability analysis of educational websites in Pakistan. In 2019 Seventh International Conference on Digital Information Processing and Communications (ICDIPC) (pp. 57-62). IEEE. http://dx.doi.org/10.1109/ICDIPC.2019.8723704

Mohamad Jamil, P. A. S., Karuppiah, K., Mohammad Yusof, N. A. D., Mohd Suadi Nata, D. H., Abdul Aziz, N., How, V., ... & Naeni, H. S. (2022). Usability testing of a wireless individual indicator system application: Monitoring exposure to outdoor air pollution among Malaysian Traffic Police. Digital Health, 8, 20552076221103336. https://doi.org/10.1177/20552076221103336

Assila, A., & Ezzedine, H. (2016). Standardized usability questionnaires: Features and quality focus. Electronic Journal of Computer Science and Information Technology, 6(1).

Kortum, P., & Oswald, F. L. (2018). The impact of personality on the subjective assessment of usability. International Journal of Human–Computer Interaction, 34(2), 177-186. https://doi.org/10.1080/10447318.2017.1336317

Lee, B., Lee, J., Cho, Y., Shin, Y., Oh, C., Park, H., & Kim, H. K. (2023). Visualisation of Information Using Patient Journey Maps for a Mobile Health Application. Applied Sciences, 13(10), 6067. https://doi.org/10.3390/app13106067

Rotaru, O. A., Vert, S., Vasiu, R., & Andone, D. (2020, October). Standardised questionnaires in usability evaluation. applying standardised usability questionnaires in digital products evaluation. In International Conference on Information and Software Technologies (pp. 39-48). Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-59506-7_4

Esteve, S., Forkey, D., & Clark, S. (2021, June). Human Factors Testing Sample Size Requirements: Is it Time to Reevaluate?. In Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care (Vol. 10, No. 1, pp. 243-246). Sage CA: Los Angeles, CA: SAGE Publications. http://dx.doi.org/10.1177/2327857921101178

Nielsen, J. (10). Usability heuristics for user interface design.

Lewis, J. R., & Sauro, J. (2021). Usability and user experience: Design and evaluation. Handbook of Human Factors and Ergonomics, 972-1015.

Lah, U., Lewis, J. R., & Šumak, B. (2020). Perceived usability and the modified technology acceptance model. International Journal of Human–Computer Interaction, 36(13), 1216-1230. http://dx.doi.org/10.1080/10447318.2020.1727262

Lewis, J. R. (2018). Measuring perceived usability: The CSUQ, SUS, and UMUX. International Journal of Human–Computer Interaction, 34(12), 1148-1156. https://doi.org/10.1080/10447318.2017.1418805

Mohamad Jamil, P. A. S., Mohammad Yusof, N. A. D., Karuppiah, K., Rasdi, I., How, V., Mohd Tamrin, S. B., ... & Almutairi, N. S. (2023). Concept development and field testing of wireless outdoor indicator system for use in monitoring exposures at work among Malaysian traffic police. Toxics, 11(4),385. https://doi.org/10.3390/toxics11040385