Role of Antimicrobial Peptides as Potential Arsenal Against SARS-CoV-2 and Other Pathogens

Main Article Content

Fatin Fathia Mohd Ali
Daniel Alex Anand
Jason T. Blackard
Pachamuthu Balakrishnan
Saravanan Shanmugam
Palanisamy Pradeep
Rehanna Mansor
Muhammad Imran Ahmad
Ramachandran Vignesh

Abstract

Antimicrobial peptides (AMPs) represent a diverse group of short peptides that are widely distributed across various organisms and serve as essential defense agents. Their crucial role in combating the escalating threat of antimicrobial resistance has heightened their significance in global research. This comprehensive review discusses the structures, characteristics, classifications, and mechanisms of action of AMPs, outlining their diverse biological functions. AMPs exhibit notable potential in antimicrobial, antiviral, antifungal, and antiparasitic activities, and have significant applications in immune response orchestration and anticancer therapies. Notably, this review highlights the emerging role of AMPs in combating the SARS-CoV-2, including their potential as a promising therapeutic strategy. Additionally, the potential utilization of AMPs in diagnostics, along with their prospects in the development of novel therapeutics, is thoroughly examined, underlining their significant clinical implications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mohd Ali, F. F., Anand, D. A., T. Blackard, J., Balakrishnan, P., Shanmugam, S., Pradeep, P., Mansor, R., Ahmad, M. I., & Vignesh, R. (2024). Role of Antimicrobial Peptides as Potential Arsenal Against SARS-CoV-2 and Other Pathogens. Malaysian Journal of Medicine and Health Sciences, 20(5), 367–380. https://doi.org/10.47836/mjmhs20.5.43
Section
Review Article

References

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond Engl. 2020 Feb 15;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5

Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta BBA - Mol Basis Dis [Internet]. 2020 Oct [cited 2021 Sep 28];1866(10):165878. doi:10.1016/j.bbadis.2020.165878

COVID-19 epidemiological update – 19 January 2024 [Internet]. [cited 2024 Mar 31]. Available from: https://www.who.int/publications/m/item/covid-19-epidemiological-update---19-january-2024

Kurpe SR, Grishin SYu, Surin AK, Panfilov AV, Slizen MV, Chowdhury SD, et al. Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2? Int J Mol Sci [Internet]. 2020 Dec 15 [cited 2021 Sep 28];21(24):9552. doi:10.3390/ijms21249552

Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006 Jul;19(3):491–511. doi:10.1128/CMR.00056-05

Bahar AA, Ren D. Antimicrobial Peptides. Pharmaceuticals [Internet]. 2013 Dec [cited 2021 Sep 28];6(12):1543–1575. doi:10.3390/ph6121543

Lei J, Sun L, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications. Antimicrob Pept. :13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684887/

Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol [Internet]. 2020 Oct 16 [cited 2021 Sep 28];11:582779. doi:10.3389/fmicb.2020.582779

M Z. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol [Internet]. 2004 Jan [cited 2021 Sep 28];75(1). doi:10.1189/jlb.0403147

Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J, et al. Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep [Internet]. 2012 Dec [cited 2021 Sep 28];39(12):10957–10970. doi:10.1007/s11033-012-1997-x

T M, M N, M B, R G, A M. Utilisation of peptides against microbial infections - a review. Ann Agric Environ Med AAEM [Internet]. 2017 Jun 7 [cited 2021 Sep 28];25(2). doi:10.26444/aaem/74471

Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol [Internet]. 2016 Dec 27 [cited 2021 Sep 29];6. doi:10.3389/fcimb.2016.00194

R R, Wc W. High-throughput discovery of broad-spectrum peptide antibiotics. FASEB J Off Publ Fed Am Soc Exp Biol [Internet]. 2010 Sep [cited 2021 Sep 29];24(9). doi:10.1096/fj.10-157040

Som A, Vemparala S, Ivanov I, Tew GN. Synthetic mimics of antimicrobial peptides. Biopolymers. 2008;90(2):83–93. doi:10.1002/bip.20970

Boman HG. Innate immunity and the normal microflora: Innate immunity and the normal microflora. Immunol Rev [Internet]. 2000 Feb [cited 2021 Sep 30];173(1):5–16. doi:10.1034/j.1600-065X.2000.917301.x

Hof W van t, Veerman ECI, Helmerhorst EJ, Amerongen AVN. Antimicrobial Peptides: Properties and Applicability. Biol Chem [Internet]. 2001 Jan 27 [cited 2021 Sep 30];382(4). doi:10.1515/BC.2001.072

Graf M, Wilson DN. Intracellular Antimicrobial Peptides Targeting the Protein Synthesis Machinery. Adv Exp Med Biol. 2019;1117:73–89. doi:10.1007/978-981-13-3588-4_6

Aisenbrey C, Marquette A, Bechinger B. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. Adv Exp Med Biol. 2019;1117:33–64. doi:10.1007/978-981-13-3588-4_4

Amso Z, Hayouka Z. Antimicrobial random peptide cocktails: a new approach to fight pathogenic bacteria. Chem Commun [Internet]. 2019 Feb 12 [cited 2021 Oct 6];55(14):2007–2014. doi:10.1039/C8CC09961H

Choi H, Rangarajan N, Weisshaar JC. Lights, Camera, Action! Antimicrobial Peptide Mechanisms Imaged in Space and Time. Trends Microbiol. 2016 Feb;24(2):111–122. doi:10.1016/j.tim.2015.11.004

Rashid R, Veleba M, Kline KA. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Front Cell Dev Biol [Internet]. 2016 [cited 2021 Oct 6];4:55. doi:10.3389/fcell.2016.00055

Chen X, Hirt H, Li Y, Gorr SU, Aparicio C. Antimicrobial GL13K Peptide Coatings Killed and Ruptured the Wall of Streptococcus gordonii and Prevented Formation and Growth of Biofilms. PLOS ONE [Internet]. 2014 Nov 5 [cited 2021 Oct 6];9(11):e111579. doi:10.1371/journal.pone.0111579

Ma G, Greenwell-Wild T, Lei K, Jin W, Swisher J, Hardegen N, et al. Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. J Exp Med. 2004 Nov 15;200(10):1337–1346. doi:10.1084/jem.20041115

Carnicelli V, Lizzi AR, Ponzi A, Amicosante G, Bozzi A, Giulio AD. Interaction between antimicrobial peptides (AMPs) and their primary target, the biomembranes. 2013;12. Available from: https://www.researchgate.net/publication/260705294_Interaction_between_antimicrobial_peptides_AMPs_and_their_primary_target_the_biomembranes

Bertrand B, Garduño-Juárez R, Munoz-Garay C. Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: A review. Biochim Biophys Acta Biomembr. 2021 Apr 1;1863(4):183551. doi:10.1016/j.bbamem.2021.183551

Wang G, Mishra B, Epand RF, Epand RM. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim Biophys Acta. 2014 Sep;1838(9):2160–2172. doi:10.1016/j.bbamem.2014.01.016

Dhir A, Dhir S, Borowski LS, Jimenez L, Teitell M, Rötig A, et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature. 2018 Aug;560(7717):238–242. doi:10.1038/s41586-018-0363-0

Li C, Liu H, Yang Y, Xu X, Lv T, Zhang H, et al. N-myristoylation of Antimicrobial Peptide CM4 Enhances Its Anticancer Activity by Interacting With Cell Membrane and Targeting Mitochondria in Breast Cancer Cells. Front Pharmacol. 2018;9:1297. doi:10.3389/fphar.2018.01297

Wagener J, Schneider JJ, Baxmann S, Kalbacher H, Borelli C, Nuding S, et al. A peptide derived from the highly conserved protein GAPDH is involved in tissue protection by different antifungal strategies and epithelial immunomodulation. J Invest Dermatol [Internet]. 2013 Jan 1 [cited 2021 Oct 8];133(1):144–153. doi:10.1038/jid.2012.254

Aslam R, Atindehou M, Lavaux T, Haïkel Y, Schneider F, Metz-Boutigue MH. Chromogranin A-derived peptides are involved in innate immunity. Curr Med Chem. 2012;19(24):4115–4123. doi:10.2174/092986712802430063

Ochoa MT, Stenger S, Sieling PA, Thoma-Uszynski S, Sabet S, Cho S, et al. T-cell release of granulysin contributes to host defense in leprosy. Nat Med. 2001 Feb;7(2):174–179. doi:10.1038/84620

Stewart SE, Kondos SC, Matthews AY, D’Angelo ME, Dunstone MA, Whisstock JC, et al. The Perforin Pore Facilitates the Delivery of Cationic Cargos. J Biol Chem [Internet]. 2014 Mar 28 [cited 2021 Oct 8];289(13):9172–9181. doi:10.1074/jbc.M113.544890

Wang G. Human Antimicrobial Peptides and Proteins. Pharmaceuticals [Internet]. 2014 May 13 [cited 2021 Oct 1];7(5):545–594. doi:10.3390/ph7050545

Lau QY, Li J, Sani MA, Sinha S, Li Y, Ng FM, et al. Elucidating the bactericidal mechanism of action of the linear antimicrobial tetrapeptide BRBR-NH2. Biochim Biophys Acta Biomembr. 2018 Aug;1860(8):1517–1527. doi:10.1016/j.bbamem.2018.05.004

A D, V C, Iw H. Self-assembling amphiphilic peptides. J Pept Sci Off Publ Eur Pept Soc [Internet]. 2014 Jul [cited 2021 Oct 8];20(7). doi:10.1002/psc.2633

Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moosazadeh Moghaddam M, et al. Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. Microb Drug Resist Larchmt N. 2018 Aug;24(6):747–767. doi:10.1089/mdr.2017.0392

Rathinakumar R, Walkenhorst WF, Wimley WC. Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc. 2009 Jun 10;131(22):7609–7617. doi:10.1021/ja8093247

Baker MA, Maloy WL, Zasloff M, Jacob LS. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 1993 Jul 1;53(13):3052–3057. Available from: https://pubmed.ncbi.nlm.nih.gov/8319212/

Winder D, Günzburg WH, Erfle V, Salmons B. Expression of antimicrobial peptides has an antitumour effect in human cells. Biochem Biophys Res Commun. 1998 Jan 26;242(3):608–612. doi:10.1006/bbrc.1997.8014

Lichtenstein A, Ganz T, Selsted ME, Lehrer RI. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood. 1986 Dec;68(6):1407–1410. Available from: https://pubmed.ncbi.nlm.nih.gov/3779104/

Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 2009 Jan;37(Database issue):D933-937. doi:10.1093/nar/gkn823

Kishi A, Takamori Y, Ogawa K, Takano S, Tomita S, Tanigawa M, et al. Differential expression of granulysin and perforin by NK cells in cancer patients and correlation of impaired granulysin expression with progression of cancer. Cancer Immunol Immunother CII. 2002 Jan;50(11):604–614. doi:10.1007/s002620100228

Wu WKK, Wang G, Coffelt SB, Betancourt AM, Lee CW, Fan D, et al. Emerging Roles of the Host Defense Peptide LL-37 in Human Cancer and its Potential Therapeutic Applications. Int J Cancer J Int Cancer [Internet]. 2010 Oct 15 [cited 2021 Oct 8];127(8):1741–1747. doi:10.1002/ijc.25489

van den Broek I, Sparidans RW, Engwegen JYMN, Cats A, Depla ACTM, Schellens JHM, et al. Evaluation of human neutrophil peptide-1, -2 and -3 as serum markers for colorectal cancer. Cancer Biomark Sect Dis Markers. 2010;7(2):109–115. doi:10.3233/CBM-2010-0153

Albrethsen J, Bøgebo R, Gammeltoft S, Olsen J, Winther B, Raskov H. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. BMC Cancer [Internet]. 2005 Jan 19 [cited 2021 Oct 8];5:8. doi:10.1186/1471-2407-5-8

Albrethsen J, Møller CH, Olsen J, Raskov H, Gammeltoft S. Human neutrophil peptides 1, 2 and 3 are biochemical markers for metastatic colorectal cancer. Eur J Cancer Oxf Engl 1990. 2006 Nov;42(17):3057–64. doi:10.1016/j.ejca.2006.05.039

Xia Li †, Yifeng Li †, Huiyun Han §, Donald W. Miller § and, Guangshun Wang* †. ACS Publications. American Chemical Society; 2006 [cited 2021 Oct 8]. Solution Structures of Human LL-37 Fragments and NMR-Based Identification of a Minimal Membrane-Targeting Antimicrobial and Anticancer Region. doi:10.1021/ja0584875

Ren SX, Shen J, Cheng ASL, Lu L, Chan RLY, Li ZJ, et al. FK-16 derived from the anticancer peptide LL-37 induces caspase-independent apoptosis and autophagic cell death in colon cancer cells. PloS One. 2013;8(5):e63641. doi:10.1371/journal.pone.0063641

J Z, J S, J H, F C, Y Z, Jt R, et al. Phosphatidylserine exposure and procoagulant activity in acute promyelocytic leukemia. J Thromb Haemost JTH [Internet]. 2010 Apr [cited 2021 Oct 8];8(4). doi:10.1111/j.1538-7836.2010.03763.x

Wang K rong, Zhang B zhi, Zhang W, Yan J xi, Li J, Wang R. Antitumor effects, cell selectivity and structure-activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides. 2008 Jun;29(6):963–8. doi:10.1016/j.peptides.2008.01.015

Wang DM, Jiao X, Plotnikoff NP, Griffin N, Qi RQ, Gao XH, et al. Killing effect of methionine enkephalin on melanoma in vivo and in vitro. Oncol Rep [Internet]. 2017 Oct [cited 2021 Oct 8];38(4):2132–40. doi:10.3892/or.2017.5918

Lei J, Sun L, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res [Internet]. 2019 [cited 2021 Oct 8];11(7):3919. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684887/

Chalmers RM, Robertson LJ, Dorny P, Jordan S, Kärssin A, Katzer F, et al. Parasite detection in food: Current status and future needs for validation. Trends Food Sci Technol [Internet]. 2020 May 1 [cited 2021 Oct 9];99:337–50. doi:10.1016/j.tifs.2020.03.011

Rhaiem RB, Houimel M. Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library. Acta Trop. 2016 Jul;159:11–9. doi:10.1016/j.actatropica.2016.03.018

Jones DE, Bevins CL. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett. 1993 Jan 4;315(2):187–92. doi:10.1016/0014-5793(93)81160-2

Dabirian S, Taslimi Y, Zahedifard F, Gholami E, Doustdari F, Motamedirad M, et al. Human Neutrophil Peptide-1 (HNP-1): A New Anti-Leishmanial Drug Candidate. PLoS Negl Trop Dis [Internet]. 2013 Oct 17 [cited 2021 Oct 9];7(10):e2491. doi:10.1371/journal.pntd.0002491

Söbirk SK, Mörgelin M, Egesten A, Bates P, Shannon O, Collin M. Human Chemokines as Antimicrobial Peptides with Direct Parasiticidal Effect on Leishmania mexicana In Vitro. PLOS ONE [Internet]. 2013 Mar 22 [cited 2021 Oct 9];8(3):e58129. doi:10.1371/journal.pone.0058129

Rico-Mata R, De Leon-Rodriguez LM, Avila EE. Effect of antimicrobial peptides derived from human cathelicidin LL-37 on Entamoeba histolytica trophozoites. Exp Parasitol. 2013 Mar;133(3):300–6. doi:10.1016/j.exppara.2012.12.009

Love MS, Millholland MG, Mishra S, Kulkarni S, Freeman KB, Pan W, et al. Platelet Factor 4 Activity against P. falciparum and Its Translation to Nonpeptidic Mimics as Antimalarials. Cell Host Microbe [Internet]. 2012 Dec 13 [cited 2021 Oct 9];12(6):815–23. doi:10.1016/j.chom.2012.10.017

Neshani A, Zare H, Akbari Eidgahi MR, Khaledi A, Ghazvini K. Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities. BMC Pharmacol Toxicol [Internet]. 2019 May 28 [cited 2021 Oct 9];20(1):33. doi:10.1186/s40360-019-0309-7

López-García B, Lee PHA, Yamasaki K, Gallo RL. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol. 2005 Jul;125(1):108–15. doi:10.1111/j.0022-202X.2005.23713.x

Madanchi H, Shoushtari M, Kashani HH, Sardari S. Antimicrobial peptides of the vaginal innate immunity and their role in the fight against sexually transmitted diseases. New Microbes New Infect. 2020 Mar;34:100627. doi:10.1016/j.nmni.2019.100627

de Vries RD, Schmitz KS, Bovier FT, Predella C, Khao J, Noack D, et al. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science. 2021 Mar 26;371(6536):1379–82. doi:10.1126/science.abf4896

Galdiero S, Falanga A, Tarallo R, Russo L, Galdiero E, Cantisani M, et al. Peptide inhibitors against herpes simplex virus infections. J Pept Sci Off Publ Eur Pept Soc. 2013 Mar;19(3):148–58. doi:10.1002/psc.2489

Qureshi A, Thakur N, Kumar M. VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses. J Transl Med [Internet]. 2013 Dec 11 [cited 2021 Oct 9];11(1):305. doi:10.1186/1479-5876-11-305

Flórez-Álvarez L, Hernandez JC, Zapata W. NK Cells in HIV-1 Infection: From Basic Science to Vaccine Strategies. Front Immunol [Internet]. 2018 [cited 2021 Oct 9];0. doi:10.3389/fimmu.2018.02290

Elnagdy S, AlKhazindar M. The Potential of Antimicrobial Peptides as an Antiviral Therapy against COVID-19. ACS Pharmacol Transl Sci [Internet]. 2020 Aug 14 [cited 2021 Sep 28];3(4):780–2. doi:10.1021/acsptsci.0c00059

Linde CMA, Grundström S, Nordling E, Refai E, Brennan PJ, Andersson M. Conserved Structure and Function in the Granulysin and NK-Lysin Peptide Family. Infect Immun [Internet]. 2005 Oct [cited 2021 Oct 9];73(10):6332–9. doi:10.1128/IAI.73.10.6332-6339.2005

Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins. J Virol. 1986 Dec;60(3):1068–74. doi:10.1128/JVI.60.3.1068-1074.1986

Gwyer Findlay E, Currie SM, Davidson DJ. Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs Clin Immunother Biopharm Gene Ther. 2013 Oct;27(5):479–493. doi:10.1007/s40259-013-0039-0

Wang W, Owen SM, Rudolph DL, Cole AM, Hong T, Waring AJ, et al. Activity of α- and θ-Defensins against Primary Isolates of HIV-1. J Immunol [Internet]. 2004 Jul 1 [cited 2021 Oct 9];173(1):515–20. doi:10.4049/jimmunol.173.1.515

Dugan AS, Maginnis MS, Jordan JA, Gasparovic ML, Manley K, Page R, et al. Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J Biol Chem. 2008 Nov 7;283(45):31125–32. doi:10.1074/jbc.M805902200

Quiñones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, et al.Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS Lond Engl. 2003 Nov 7;17(16):F39-48. doi:10.1097/00002030-200311070-00001

Cutuli M, Cristiani S, Lipton JM, Catania A. Antimicrobial effects of alpha-MSH peptides. J Leukoc Biol. 2000 Feb;67(2):233–239. doi:10.1002/jlb.67.2.233

Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003 Mar;4(3):269–273. doi:10.1038/ni888

Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006 Aug 25;313(5790):1126–1130. doi:10.1126/science.1127119

Am C, Yh K, S T, T H, P W, Aj W, et al. Calcitermin, a novel antimicrobial peptide isolated from human airway secretions. FEBS Lett [Internet]. 2001 Aug 24 [cited 2021 Oct 4];504(1–2). doi:10.1016/s0014-5793(01)02731-4

Gläser R, Harder J, Lange H, Bartels J, Christophers E, Schröder JM. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol. 2005 Jan;6(1):57–64. doi:10.1038/ni1142

Schulz A, Klüver E, Schulz-Maronde S, Adermann K. Engineering disulfide bonds of the novel human beta-defensins hBD-27 and hBD-28: differences in disulfide formation and biological activity among human beta-defensins. Biopolymers. 2005;80(1):34–49. doi:10.1002/bip.20193

Tam C, Mun JJ, Evans DJ, Fleiszig SMJ. Cytokeratins mediate epithelial innate defense through their antimicrobial properties. J Clin Invest [Internet]. 2012 Oct 1 [cited 2021 Oct 5];122(10):3665–77. doi:10.1172/JCI64416

Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, et al. Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol. 2003 Sep;74(3):448–455. doi:10.1189/jlb.0103024

Feng Y, Huang N, Wu Q, Wang B. HMGN2: a novel antimicrobial effector molecule of human mononuclear leukocytes? J Leukoc Biol. 2005 Nov;78(5):1136–1141. doi:10.1189/jlb.0505280

Li L, Sun J, Xia S, Tian X, Cheserek MJ, Le G. Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest. Appl Microbiol Biotechnol. 2016 Apr;100(7):3245–3253. doi:10.1007/s00253-015-7265-y

Brice DC, Diamond G. Antiviral Activities of Human Host Defense Peptides. Curr Med Chem. 2020 Mar 1;27(9):1420–1443. doi:10.2174/0929867326666190805151654

Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006 Dec;24(12):1551–1557. doi:10.1038/nbt1267

Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020 May;19(5):311–332. doi:10.1038/s41573-019-0058-8

Prasad SV, Fiedoruk K, Daniluk T, Piktel E, Bucki R. Expression and Function of Host Defense Peptides at Inflammation Sites. Int J Mol Sci. 2019 Dec 22;21(1):E104. doi:10.3390/ijms21010104

Doss M, White MR, Tecle T, Hartshorn KL. Human defensins and LL-37 in mucosal immunity. J Leukoc Biol. 2010 Jan;87(1):79–92. doi:10.1189/jlb.0609382

Ahmed A, Siman-Tov G, Keck F, Kortchak S, Bakovic A, Risner K, et al. Human cathelicidin peptide LL-37 as a therapeutic antiviral targeting Venezuelan equine encephalitis virus infections. Antiviral Res. 2019 Apr;164:61–69. doi:10.1016/j.antiviral.2019.02.002

Diamond G, Beckloff N, Weinberg A, Kisich KO. The Roles of Antimicrobial Peptides in Innate Host Defense. Curr Pharm Des [Internet]. 2009 [cited 2021 Dec 3];15(21):2377–92. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750833/

Liang W, Diana J. The Dual Role of Antimicrobial Peptides in Autoimmunity. Front Immunol [Internet]. 2020 [cited 2021 Dec 3];11:2077. doi:10.3389/fimmu.2020.02077

Whisenant J, Burgess K. Blocking Coronavirus 19 Infection via the SARS-CoV-2 Spike Protein: Initial Steps. ACS Med Chem Lett. 2020 Jun 11;11(6):1076–1078. doi:10.1021/acsmedchemlett.0c00233

Wang C, Wang S, Li D, Chen P, Han S, Zhao G, et al. Human Cathelicidin Inhibits SARS-CoV-2 Infection: Killing Two Birds with One Stone. ACS Infect Dis. 2021 Jun 11;7(6):1545–1554. doi:10.1021/acsinfecdis.1c00096

Wang C, Wang S, Li D, Wei DQ, Zhao J, Wang J. Human Intestinal Defensin 5 Inhibits SARS-CoV-2 Invasion by Cloaking ACE2. Gastroenterology [Internet]. 2020 Sep [cited 2021 Nov 14];159(3):1145-1147.e4. doi:10.1053/j.gastro.2020.05.015

Lokhande KB, Banerjee T, Swamy KV, Ghosh P, Deshpande M. An in silico scientific basis for LL-37 as a therapeutic for Covid-19. Proteins. 2021 Aug 1; doi:10.1002/prot.26198

Zhang L, Ghosh SK, Basavarajappa SC, Muller-Greven J, Penfield J, Brewer A, et al. Molecular dynamics simulations and functional studies reveal that hBD-2 binds SARS-CoV-2 spike RBD and blocks viral entry into ACE2 expressing cells. bioRxiv [Internet]. 2021 Jan 7 [cited 2021 Nov 14];2021.01.07.425621. doi:10.1101/2021.01.07.425621

Ghosh SK, Weinberg A. Ramping Up Antimicrobial Peptides Against Severe Acute Respiratory Syndrome Coronavirus-2. Front Mol Biosci [Internet]. 2021 Jun 21 [cited 2021 Sep 28];8:620806. doi:10.3389/fmolb.2021.620806

Dassanayake MK, Khoo TJ, Chong CH, Di Martino P. Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus. Int J Mol Sci [Internet]. 2022 Jan [cited 2023 Oct 20];23(19):11131. doi:10.3390/ijms231911131

Balmeh N, Mahmoudi S, Fard NA. Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease. Inform Med Unlocked [Internet]. 2021 Jan 1 [cited 2023 Oct 20];23:100515. doi:10.1016/j.imu.2021.100515

Zhao H, To KKW, Sze KH, Yung TTM, Bian M, Lam H, et al. A broad-spectrum virus- and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2. Nat Commun [Internet]. 2020 Aug 25 [cited 2023 Oct 20];11(1):4252. doi:10.1038/s41467-020-17986-9

Bakovic A, Risner K, Bhalla N, Alem F, Chang TL, Weston W, et al. Brilacidin, a COVID-19 Drug Candidate, Exhibits Potent In Vitro Antiviral Activity Against SARS-CoV-2 [Internet]. bioRxiv; 2020 [cited 2023 Oct 20]. p. 2020.10.29.352450. doi:10.1101/2020.10.29.352450

Li Q, Zhao Z, Zhou D, Chen Y, Hong W, Cao L, et al. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides [Internet]. 2011 Jul 1 [cited 2023 Oct 20];32(7):1518–1525. doi:10.1016/j.peptides.2011.05.015

Roth A, Lütke S, Meinberger D, Hermes G, Sengle G, Koch M, et al. LL-37 fights SARS-CoV-2: The Vitamin D-Inducible Peptide LL-37 Inhibits Binding of SARS-CoV-2 Spike Protein to its Cellular Receptor Angiotensin Converting Enzyme 2 In Vitro. 2020. doi:10.1101/2020.12.02.408153

Leelakanok N, Fischer C, Bates A, Guthmiller J, Johnson G, Salem A, et al. Cytotoxicity of HBD3 for dendritic cells, normal human epidermal keratinocytes, hTERT keratinocytes, and primary oral gingival epithelial keratinocytes in cell culture conditions. Toxicol Lett. 2015 Sep 14;239. doi:10.1016/j.toxlet.2015.09.006

Otte JM, Werner I, Brand S, Chromik AM, Schmitz F, Kleine M, et al. Human beta defensin 2 promotes intestinal wound healing in vitro. J Cell Biochem. 2008 Aug 15;104(6):2286–2297. doi:10.1002/jcb.21787

Warnke PH, Voss E, Russo PAJ, Stephens S, Kleine M, Terheyden H, et al. Antimicrobial peptide coating of dental implants: biocompatibility assessment of recombinant human beta defensin-2 for human cells. Int J Oral Maxillofac Implants. 2013 Aug;28(4):982–988. doi:10.11607/jomi.2594

Cheng WL, Wang CS, Huang YH, Liang Y, Lin PY, Hsueh C, et al. Overexpression of a secretory leukocyte protease inhibitor in human gastric cancer. Int J Cancer. 2008 Oct 15;123(8):1787–1796. doi:10.1002/ijc.23746

Leung T f., Ching K w., Kong A p. s., Wong G w. k., Chan J c. n., Hon K l. Circulating LL-37 is a biomarker for eczema severity in children. J Eur Acad Dermatol Venereol [Internet]. 2012 [cited 2021 Oct 10];26(4):518–522. doi:10.1111/j.1468-3083.2011.04083.x

Weber G, Chamorro CI, Granath F, Liljegren A, Zreika S, Saidak Z, et al. Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Res BCR. 2009;11(1):R6. doi:10.1186/bcr2221

Aryana K, Hootkani A, Sadeghi R, Davoudi Y, Naderinasab M, Erfani M, et al. (99m)Tc-labeled ubiquicidin scintigraphy: a promising method in hip prosthesis infection diagnosis. Nukl Nucl Med. 2012;51(4):133–139. doi:10.3413/Nukmed-0444-11-11

Welling MM, Paulusma-Annema A, Balter HS, Pauwels EK, Nibbering PH. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med. 2000 Mar;27(3):292–301. doi:10.1007/s002590050036

Wang G. Antimicrobial peptides: Discovery, design, and novel therapeutic strategies [Internet]. CABI Publishing; 2010 [cited 2021 Oct 11]. Available from: http://www.scopus.com/inward/record.url?scp=84890214178&partnerID=8YFLogxK

Boman HG. Antibacterial peptides: basic facts and emerging concepts. J Intern Med [Internet]. 2003 Sep [cited 2021 Oct 1];254(3):197–215. doi:10.1046/j.1365-2796.2003.01228.x

Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003 Sep;3(9):710–720. doi:10.1038/nri1180

Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009 Mar;30(3):131–141. doi:10.1016/j.it.2008.12.003

Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol. 2012;52:337–360. doi:10.1146/annurev-pharmtox-010611-134535

Zasloff M. Antimicrobial Peptides of Multicellular Organisms: My Perspective. Adv Exp Med Biol. 2019;1117:3–6. doi:10.1007/978-981-13-3588-4_1

Forde E, Humphreys H, Greene CM, Fitzgerald-Hughes D, Devocelle M. Potential of host defense peptide prodrugs as neutrophil elastase-dependent anti-infective agents for cystic fibrosis. Antimicrob Agents Chemother. 2014;58(2):978–985. doi:10.1128/AAC.01167-13

da Silva APG, Unks D, Lyu S chen, Ma J, Zbozien-Pacamaj R, Chen X, et al. In vitro and in vivo antimicrobial activity of granulysin-derived peptides against Vibrio cholerae. J Antimicrob Chemother. 2008 May;61(5):1103–1109. doi:10.1093/jac/dkn058

McInturff JE, Wang SJ, Machleidt T, Lin TR, Oren A, Hertz CJ, et al. Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against Propionibacterium acnes. J Invest Dermatol. 2005 Aug;125(2):256–263. doi:10.1111/j.0022-202X.2005.23805.x

Reynolds NL, De Cecco M, Taylor K, Stanton C, Kilanowski F, Kalapothakis J, et al. Peptide Fragments of a β-Defensin Derivative with Potent Bactericidal Activity. Antimicrob Agents Chemother [Internet]. 2010 May [cited 2021 Oct 11];54(5):1922–1929. doi:10.1128/AAC.01568-09

Torrent M, Pulido D, Valle J, Nogués MV, Andreu D, Boix E. Ribonucleases as a host-defence family: evidence of evolutionarily conserved antimicrobial activity at the N-terminus. Biochem J. 2013 Nov 15;456(1):99–108. doi:10.1042/BJ20130123

de la Fuente-Núñez C, Silva ON, Lu TK, Franco OL. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol Ther. 2017 Oct;178:132–140. doi:10.1016/j.pharmthera.2017.04.002

Gough M, Hancock RE, Kelly NM. Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun. 1996 Dec;64(12):4922–4927. doi:10.1128/iai.64.12.4922-4927.1996

Ahmad I, Perkins WR, Lupan DM, Selsted ME, Janoff AS. Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochim Biophys Acta. 1995 Jul 26;1237(2):109–114. doi:10.1016/0005-2736(95)00087-j

Biragyn A, Surenhu M, Yang D, Ruffini PA, Haines BA, Klyushnenkova E, et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol Baltim Md 1950. 2001 Dec 1;167(11):6644–6653. doi:10.4049/jimmunol.167.11.6644

Mei H fang, Jin X bao, Zhu J yong, Zeng A hua, Wu Q, Lu X mei, et al. β-defensin 2 as an adjuvant promotes anti-melanoma immune responses and inhibits the growth of implanted murine melanoma in vivo. PloS One. 2012;7(2):e31328. doi:10.1371/journal.pone.0031328

Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin Immunol [Internet]. 2010 Apr [cited 2021 Oct 2];135(1):1–11. doi:10.1016/j.clim.2009.12.004

Jacob L, Zasloff M. Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Found Symp. 1994;186:197–216; discussion 216-223. doi:10.1002/9780470514658.ch12

Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 2020 Sep;20(9):e216–e230. doi:10.1016/S1473-3099(20)30327-3

Shartouny JR, Jacob J. Mining the tree of life: Host defense peptides as antiviral therapeutics. Semin Cell Dev Biol. 2019 Apr;88:147–155. doi:10.1016/j.semcdb.2018.03.001

Pattabiraman VR, Bode JW. Rethinking amide bond synthesis. Nature. 2011 Dec 21;480(7378):471–479. doi:10.1038/nature10702

McGregor DP. Discovering and improving novel peptide therapeutics. Curr Opin Pharmacol. 2008 Oct;8(5):616–619. doi:10.1016/j.coph.2008.06.002

Mahendran ASK, Lim YS, Fang CM, Loh HS, Le CF. The Potential of Antiviral Peptides as COVID-19 Therapeutics. Front Pharmacol. 2020;11:575444. doi:10.3389/fphar.2020.575444