Lauric Acid Improves Kidney Structure and Function of Streptozotocin-induced Diabetic Nephropathy Rats

Main Article Content

Nurdiana Samsulrizal
Muhammad Aiman Faris Maznan
Nursarah Syamimi Anuar
Syahirah Ain Shafie
Nabilah Ahmad A’ulwi
Mohd Daud Bakar
Hafandi Ahmad

Abstract

Introduction: Lauric acid has the potential to reduce blood glucose, stimulate insulin secretion, and enhance antioxidant activity. However, whether lauric acid protects against diabetic nephropathy remains elusive. The study aimed to investigate the nephroprotective effects of lauric acid in streptozotocin-induced diabetic nephropathy rats. Materials and methods: Lauric acid was orally administered to diabetic rats for 8 weeks at doses of 25, 50, and 100 mg/kg body weight (bwt). Changes in fasting blood glucose (FBG), glucose tolerance, insulin levels, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were investigated. Biochemical and histological examinations were performed to determine treatment effects on the kidneys structure and function. Fourier transform infrared (FTIR) spectroscopy combined with chemometric analysis was employed to identify potential infrared spectral biomarkers. Results: We showed that all treatment doses increased SOD and CAT levels as well as decreased serum creatinine levels and blood urea nitrogen (BUN). However, a significant decrease in FBG levels and an increase in insulin levels were observed exclusively in the DLA50 and DLA100 groups. Meanwhile, only DLA50 animals exhibited normalized MDA levels, increased glomeruli size, and had well-defined tubules. These results are corroborated by findings obtained from hierarchical cluster analysis (HCA) and principal component analysis (PCA) for FTIR peak intensity at wavenumbers 1511 and 1545 cm-1. Conclusion: Our findings suggest that lauric acid exerts nephroprotective effects in diabetic rats by improving antioxidant activities and positively influencing glucose and insulin levels. These insights contribute to the therapeutic potential of lauric acid in mitigating diabetic nephropathy. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Samsulrizal, N., Maznan, M. A. F., Anuar, N. S., Shafie, S. A., A’ulwi, N. A., Bakar, M. D., & Ahmad, H. (2025). Lauric Acid Improves Kidney Structure and Function of Streptozotocin-induced Diabetic Nephropathy Rats. Malaysian Journal of Medicine and Health Sciences, 21(3), 337–345. https://doi.org/10.47836/mjmhs.21.3.39
Section
Original Articles

References

Wu T, Ding L, Andoh V, Zhang J, Chen L. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: An Update. Life (Basel). 2023;13:539. doi:10.3390/life13020539.

Rossing P, Persson F, Frimodt-Møller M. Prognosis and treatment of diabetic nephropathy: Recent advances and perspectives. Nephrol Ther. 2018;14:S31-S37. doi:10.1016/j.nephro.2018.02.007.

Zhang Y, He D, Zhang W, Xing Y, Guo Y, Wang F, et al. ACE inhibitor benefit to kidney and cardiovascular outcomes for patients with non-dialysis chronic kidney disease stages 3-5: A network meta-analysis of randomised clinical trials. Drugs. 2020;80:797–811. doi:10.1007/s40265-020-01290-3.

Caramori ML, Rossing P. Diabetic kidney disease. In K. R. Feingold (Eds.) et. al., Endotext. MDText.com, Inc; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279103/

Sagoo MK, Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress?. Free Radic Biol Med. 2018;116:50–63. doi:10.1016/j.freeradbiomed.2017.12.040.

Sharma A, Gupta P, Prabhakar PK. Endogenous repair system of oxidative damage of DNA. Curr. Chem. Biol. 2019;13:110-119. doi:10.2174/2212796813666190221152908.

Darenskaya M, Kolesnikov S, Semenova N, Kolesnikova L. Diabetic nephropathy: significance of determining oxidative stress and opportunities for antioxidant therapies. Int J Mol Sci. 2023;24:12378. doi:10.3390/ijms241512378.

Goycheva P, Petkova-Parlapanska K, Georgieva E, Karamalakova Y, Nikolova G. Biomarkers of oxidative stress in diabetes mellitus with diabetic nephropathy complications. Int J Mol Sci. 2023;24(17):13541. doi:10.3390/ijms241713541.

Kandhare AD, Mukherjee A, Bodhankar SL. Antioxidant for treatment of diabetic nephropathy: A systematic review and meta-analysis. Chem Biol Interact. 2017;278:212–221. doi:10.1016/j.cbi.2017.10.031.

Østergaard JA, Cooper ME, Jandeleit-Dahm KAM. Targeting oxidative stress and anti-oxidant defence in diabetic kidney disease. J Nephrol. 2020;33:917-929. doi:10.1007/s40620-020-00749-6.

Grajeda-Iglesias C, Salas E, Barouh N, Baréa B, Panya A, Figueroa-Espinoza MC. Antioxidant activity of protocatechuates evaluated by DPPH, ORAC, and CAT methods. Food Chem. 2016;194:749–757. doi:10.1016/j.foodchem.2015.07.119.

Mett J, Müller U. The medium-chain fatty acid decanoic acid reduces oxidative stress levels in neuroblastoma cells. Sci Rep. 2021;11:6135. doi:10.1038/s41598-021-85523-9.

Wang Z, Wang Q, Tang C, Yuan J, Luo C, Li D, Xie T, Sun X, Zhang Y, Yang Z, Guo C, Cao Z, Li S, Wang W. Medium chain fatty acid supplementation improves animal metabolic and immune status during the transition period: A study on dairy cattle. Front Immunol. 2023;14:1018867. doi:10.3389/fimmu.2023.1018867.

Huang L, Gao L, Chen C. Role of medium-chain fatty acids in healthy metabolism: A clinical perspective. Trends Endocrinol Metab. 2021;32:351–366. doi:10.1016/j.tem.2021.03.002.

Roopashree PG, Shetty SS, Kumari NS. Effect of medium chain fatty acid in human health and disease. J. Funct. Foods. 2021;87:104724. doi:10.1016/j.jff.2021.104724.

Ullah S, Zhang J, Xu B, Tegomo AF, Sagada G, Zheng L, Wang L, Shao Q. Effect of dietary supplementation of lauric acid on growth performance, antioxidative capacity, intestinal development and gut microbiota on black sea bream (Acanthopagrus schlegelii). PloS one. 2022;17:e0262427. doi:10.1371/journal.pone.0262427.

Katsimbri P, Korakas E, Kountouri A, Ikonomidis I, Tsougos E, Vlachos D, Lambadiari V. The effect of antioxidant and anti-inflammatory capacity of diet on psoriasis and psoriatic arthritis phenotype: nutrition as therapeutic tool?. Antioxidants (Basel). 2021;10:157. doi:10.3390/antiox10020157.

Anuar NS, Shafie SA, Maznan MAF, Zin NSNM, Azmi NAS, Raoof RA, Myrzakozha D, Samsulrizal N. Lauric acid improves hormonal profiles, antioxidant properties, sperm quality and histomorphometric changes in testis and epididymis of streptozotocin-induced diabetic infertility rats. Toxicol Appl Pharmacol. 2023;470:116558. doi:10.1016/j.taap.2023.116558.

Zaidi AA, Khan MA, Shahreyar ZA, Ahmed H. Lauric acid: Its role in behavioral modulation, neuro-inflammatory and oxidative stress markers in haloperidol induced Parkinson's disease. Pak J Pharm Sci. 2020;33:755–763. doi:10.36721/PJPS.2020.33.2.SUP.755-763.1.

Alfhili MA, Aljuraiban GS. Lauric acid, a dietary saturated medium-chain fatty acid, elicits calcium-dependent eryptosis. Cells.2021;10:3388. doi:10.3390/cells10123388.

Petibois C, Melin AM, Perromat A, Cazorla G, Déléris G. Glucose and lactate concentration determination on single microsamples by Fourier-transform infrared spectroscopy. J Lab Clin Med. 2000;135:210–215. doi:10.1067/mlc.2000.104460.

Vigo F, Tozzi A, Disler M, Gisi A, Kavvadias V, Kavvadias T. Vibrational spectroscopy in urine samples as a medical tool: review and overview on the current state-of-the-art. Diagnostics (Basel). 2022;13:27. doi:10.3390/diagnostics13010027.

Rohman A, Windarsih A, Lukitaningsih E, Rafi M, Betania K, Fadzillah NA. The use of FTIR and Raman spectroscopy in combination with chemometrics for analysis of biomolecules in biomedical fluids: A review. Biomedical Spectroscopy and Imaging. 2019;8:55-71. doi:10.3233/BSI-200189.

Elamin NMH, Fadlalla IMT, Omer SA, Ibrahim HAM. Histopathological alteration in STZ-nicotinamide diabetic rats, a complication of diabetes or a toxicity of STZ?. Int J Diabetes Clin Res. 2018;5:091. doi:10.23937/2377-3634/1410091.

Nurdiana S, Goh YM, Ahmad H, Dom SM, Nur Syimal’ain A, Noor Syaffinaz NMZ, Ebrahimi M. Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin. BMC Complement Altern Med. 2017;17:1–17. doi:10.1186/s12906-017-1762-8.

Xu W, Luo Q, Wen X, Xiao M, Mei Q. Antioxidant and anti-diabetic effects of caffeic acid in a rat model of diabetes. Trop. J. Pharm. Res. 2020;19:1227-1232. doi:10.4314/tjpr.v19i6.17.

Alves NFB, de Queiroz TM, de Almeida Travassos R, Magnani M, de Andrade Braga V. Acute treatment with lauric acid reduces blood pressure and oxidative stress in spontaneously hypertensive rats. Basic Clin Pharmacol Toxicol. 2017;120:348–353. doi:10.1111/bcpt.12700.

Azad AK, Sulaiman WMAW. Antidiabetic effects of P. macrocarpa ethanolic fruit extract in streptozotocin-induced diabetic rats. Futur J Pharm Sci. 2020;6:57. doi:10.1186/s43094-020-00073-7.

Samsulrizal N, Goh YM, Ahmad H, Md Dom S, Azmi NS, NoorMohamad Zin NS, Ebrahimi M. Ficus deltoidei promotes bone formation in streptozotocin-induced diabetic rats. Pharm Biol. 2021;59:66–73. doi:10.1080/13880209.2020.1865411.

Nurdiana S, Goh YM, Hafandi A, Dom SM, Nur Syimal’ain A, Noor Syaffinaz NM, Ebrahimi M. Improvement of spatial learning and memory, cortical gyrification patterns and brain oxidative stress markers in diabetic rats treated with Ficus deltoidea leaf extract and vitexin. J. Tradit. Complement. Med. 2018;8:190–202. doi:10.1016/j.jtcme.2017.05.006.

Demir P, Akkas SB, Severcan M, Zorlu F, Severcan F. Ionizing radiation induces structural and functional damage on the molecules of rat brain homogenate membranes: a Fourier transform infrared (FT-IR) spectroscopic study. Appl Spectrosc. 2015;69:154-64. doi:10.1366/13-07154.

Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal models of diabetes-associated renal injury. J Diabetes Res. 2020;2020:9416419. doi:10.1155/2020/9416419.

McVeay C, Fitzgerald P.C.E, Horowitz M, Feinle-Bisset C. Effects of duodenal infusion of lauric acid and l-tryptophan, alone and combined, on fasting glucose, insulin and glucagon in healthy men. Nutrients. 2019;11:2697. doi:10.3390/nu11112697.

Domon A, Katayama K, Yamada T, Tochigi Y, Suzuki H. Characterization of enlarged kidneys and their potential for inducing diabetes in DEK Rats. Biology (Basel). 2021;10:633. doi:10.3390/biology10070633.

Ma R, He Y, Fang Q, Xie G, Qi M. Ferulic acid ameliorates renal injury via improving autophagy to inhibit inflammation in diabetic nephropathy mice. Biomed Pharmacother. 2022;153:113424. doi:10.1016/j.biopha.2022.113424.

Hajishafiee M, McVeay C, Lange K, Rehfeld JF, Horowitz M, Feinle-Bisset C. Effects of intraduodenal infusion of lauric acid and L-tryptophan, alone and combined, on glucoregulatory hormones, gastric emptying and glycaemia in healthy men. Metabolism. 2022;129:155140. doi:10.1016/j.metabol.2022.155140.

Brookes EM, Power DA. Elevated serum urea-to-creatinine ratio is associated with adverse inpatient clinical outcomes in non-end stage chronic kidney disease. Sci Rep. 2022;12:20827. doi:10.1038/s41598-022-25254-7.

Namachivayam A, Valsala Gopalakrishnan A. Effect of lauric acid against ethanol-induced hepatotoxicity by modulating oxidative stress/apoptosis signalling and HNF4α in Wistar albino rats. Heliyon. 2023;9(11): e21267. doi:10.1016/j.heliyon.2023.e21267.

Sinaga FA, Harahap U, Silalahi J, Sipahutar H. Antioxidant effect of virgin coconut oil on urea and creatinine levels on maximum physical activity. Open Access Maced J Med Sci. 2019;7:3781–doi:10.3889/oamjms.2019.503.

Famurewa AC, Akunna GG, Nwafor J, Chukwu OC, Ekeleme-Egedigwe CA, Oluniran JN. Nephroprotective activity of virgin coconut oil on diclofenac-induced oxidative nephrotoxicity is associated with antioxidant and anti-inflammatory effects in rats. Avicenna J Phytomed. 2020;10:316–324. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256280/.

Sangappa SB, Das T, Preethi BP. Correlation of fasting blood, salivary glucose and malondialdehyde in subjects with & without type 2 diabetes. Braz. J. Oral Sci. 2023;22:e239042. doi:10.20396/bjos.v22i00.8669042.

Nakai K, Umehara M, Minamida A, Yamauchi-Sawada H, Sunahara Y, Matoba Y, Okuno-Ozeki N, Nakamura I, Nakata T, Yagi-Tomita A, Uehara-Watanabe N, Ida T, Yamashita N, Kamezaki M, Kirita Y, Konishi E, Yasuda H, Matoba S, Tamagaki K, Kusaba T. Streptozotocin induces renal proximal tubular injury through p53 signaling activation. Sci Rep. 2023;13:8705. doi:10.1038/s41598-023-35850-w.

Thomas S, Karalliedde J. Diabetic nephropathy. Medicine. 2015;43:20–25. doi:10.1016/j.mpmed.2014.10.007.

Wu T, Ding L, Andoh V, Zhang J, Chen L. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: An update. Life (Basel). 2023;13:539. doi:10.3390/life13020539.

Girard J. Rôle des reins dans l’homéostasie du glucose. Implication du cotransporteur sodium–glucose SGLT2 dans le traitement du diabète [Role of the kidneys in glucose homeostasis. Implication of sodium-glucose cotransporter 2 (SGLT2) in diabetes mellitus treatment]. Nephrol Ther. 13 Suppl. 2017;1:S35–S41. doi:10.1016/j.nephro.2017.01.006.

Gronda E, Jessup M, Iacoviello M, Palazzuoli A, Napoli C. Glucose metabolism in the kidney: neurohormonal activation and heart failure development. J Am Heart Assoc. 2020;9:e018889. doi:10.1161/JAHA.120.018889.

Delrue C, De Bruyne S, Speeckaert MM. The potential use of near- and mid-infrared spectroscopy in kidney diseases. Int J Mol Sci. 2023;24:6740. doi:10.3390/ijms24076740.

Lee S. Human serum albumin: A nanomedicine platform targeting breast cancer cells. J Drug Deliv Sci Technol. 2019;52:652-659. doi:10.1016/j.jddst.2019.05.033.

Li J, Wu B, Hu H, Fang X, Liu Z, Wu S. GdCl3 attenuates the glomerular sclerosis of streptozotocin (STZ) induced diabetic rats via inhibiting TGF-β/Smads signal pathway. J Pharmacol Sci. 2020;142:41-49. doi:10.1016/j.jphs.2019.06.008.