Evaluating the Association Between Maternal Paracetamol Intake and Childhood Asthma: A Review for Prenatal Nursing Management

Main Article Content

Rosmaliza Ramli
Nurul Hayati Mohamad Zainal
Jovita Ann Noel
Wan Nazatul Shima Shahidan
Tuan Nadrah Naim T Ismail @ T Manah
Nurulezah Hasbullah

Abstract

Nurses are integral members of the healthcare team and play an important role in providing healthcare information to pregnant women. Recent evidence suggests that the use of paracetamol in pregnant women increases the risk for childhood asthma in offspring. This review aimed to provide an updated evaluation of maternal paracetamol intake and its association with childhood asthma in offspring. Using PubMed, Scopus, and Web of Science scientific databases, we screened relevant articles on maternal paracetamol use and childhood asthma. After applying inclusion and exclusion criteria, 19 articles were selected for review. Most studies support the association between maternal paracetamol use and childhood asthma in offspring. However, interpreting these findings requires caution, as factors such as maternal asthma history, emotional state, and pain levels may influence the observed associations. Therefore, the use of paracetamol for fever and pain management in pregnant women should be approached judiciously.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ramli, R., Mohamad Zainal, N. H., Noel, J. A., Shahidan, W. N. S., T Ismail @ T Manah, T. N. N., & Hasbullah, N. (2025). Evaluating the Association Between Maternal Paracetamol Intake and Childhood Asthma: A Review for Prenatal Nursing Management. Malaysian Journal of Medicine and Health Sciences, 21(3), 497–511. https://doi.org/10.47836/mjmhs.21.3.58
Section
Review Article

References

World Health Organization. WHO recommendations on antenatal care for a positive pregnancy experience. 2016. https://apps.who.int/iris/bitstream/handle/10665/250796/97892415?sequence=1

World Health Organization. World Health Organization. WHO recommendations on antenatal care for a positive pregnancy experience: summary: highlights and key messages from the World Health Organization’s 2016 global recommendations for routine antenatal care. World Health Organization. 2018. https://iris.who.int/bitstream/handle/10665/259947/WHO-RHR-18.02-eng.pdf

Lupattelli A, Spigset O, Twigg MJ, Zagorodnikova K, Mårdby AC, Moretti ME, et al. Medication use in pregnancy: a cross-sectional, multinational web-based study. BMJ Open. 2014;4(2):e004365. doi.org/10.1136/bmjopen-2013-004365

Werler MM, Mitchell AA, Hernandez-Diaz S, Honein MA. Use of over-the-counter medications during pregnancy. Am J Obstet Gynecol. 2005;193(3):771–7. doi.org/10.1016/j.ajog.2005.02.100

Brune K, Renner B, Tiegs G. Acetaminophen/paracetamol: a history of errors, failures and false decisions. European journal of pain. 2015;19(7):953–65. doi.org/10.1002/ejp.621

Bosch ME, Sánchez AR, Rojas FS, Ojeda CB. Determination of paracetamol: Historical evolution. Journal of pharmaceutical and biomedical analysis. 2006;42(3):291-321. doi.org/10.1016/j.jpba.2006.04.007

Källén B, Reis M. Ongoing pharmacological management of chronic pain in pregnancy. Drugs. 2016;76:915–24. doi.org/10.1007/s40265-016-0582-3

Sass L, Urhoj SK, Kjærgaard J, Dreier JW, Strandberg-Larsen K, Nybo Andersen AM. Fever in pregnancy and the risk of congenital malformations: a cohort study. BMC Pregnancy Childbirth. 2017;17:1–9. doi.org/10.1186/s12884-017-1585-0

Croen LA, Qian Y, Ashwood P, Zerbo O, Schendel D, Pinto‐Martin J, et al. Infection and fever in pregnancy and autism spectrum disorders: findings from the study to explore early development. Autism Research. 2019;12(10):1551–61. doi.org/10.1002/aur.2175

Gustavson K, Ask H, Ystrom E, Stoltenberg C, Lipkin WI, Surén P, et al. Maternal fever during pregnancy and offspring attention deficit hyperactivity disorder. Sci Rep. 2019;9(1):9519. doi.org/10.1038/s41598-019-45920-7

Wang M, Wang ZP, Gong R, Zhao ZT. Maternal flu or fever, medications use in the first trimester and the risk for neural tube defects: a hospital-based case–control study in China. Child’s Nervous System. 2014;30:665–71. doi.org/10.1007/s00381-013-2305-3

Li Z, Ren A, Liu J, Pei L, Zhang L, Guo Z, et al. Maternal flu or fever, medication use, and neural tube defects: a population-based case-control study in Northern China. Birth Defects Res A Clin Mol Teratol. 2007;79(4):295–300. doi.org/10.1002/bdra.20342

Graham Jr JM. Update on the gestational effects of maternal hyperthermia. Birth Defects Res. 2020;112(12):943–52. doi.org/10.1002/bdr2.1696

Bauer AZ, Swan SH, Kriebel D, Liew Z, Taylor HS, Bornehag CG, et al. Paracetamol use during pregnancy—a call for precautionary action. Nat Rev Endocrinol. 2021;17(12):757–66. doi.org/10.1038/s41574-021-00553-7

Zafeiri A, Mitchell RT, Hay DC, Fowler PA. Over-the-counter analgesics during pregnancy: a comprehensive review of global prevalence and offspring safety. Hum Reprod Update. 2021;27(1):67–95. doi.org/10.1093/humupd/dmaa042

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol. 2021;134:103–12. doi.org/10.1016/j.jclinepi.2021.02.003

Asher MI, Rutter CE, Bissell K, Chiang CY, El Sony A, Ellwood E, et al. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study. the lancet. 2021;398(10311):1569–80. doi.org/10.1016/S0140- 6736(21)01450-1

Asher I, Pearce N. Global burden of asthma among children. The international journal of tuberculosis and lung disease. 2014;18(11):1269–78. doi.org/10.5588/ijtld.14.0170

Sukri N, Ramdzan SN, Liew SM, Salim H, Khoo EM. Perceptions of childhood asthma and its control among Malays in Malaysia: a qualitative study. NPJ Prim Care Respir Med. 2020;30(1):26. doi.org/10.1038/s41533-020-0185-z

Newson RB, Shaheen SO, Chinn S, Burney PG. Paracetamol sales and atopic disease in children and adults: an ecological analysis. European respiratory journal. 2000;16(5):817–23. doi: 10.1183/09031936.00.16581700

Shaheen SO, Newson RB, Sherriff A, Henderson AJ, Heron JE, Burney PGJ, et al. Paracetamol use in pregnancy and wheezing in early childhood. Thorax. 2002 Nov 1;57(11):958–63. doi.org/10.1136/thorax.57.11.958

Shaheen SO, Newson RB, Henderson AJ, Headley JE, Stratton FD, Jones RW, et al. Prenatal paracetamol exposure and risk of asthma and elevated immunoglobulin E in childhood. Clinical and Experimental Allergy. 2005 Jan;35(1):18–25. doi.org/10.1111/j.1365-2222.2005.02151.x

Riece K, Yiong Huak C, Teng Nging T, Van Bever HP. A matched patient-sibling study on the usage of paracetamol and the subsequent development of allergy and asthma. Pediatric Allergy and Immunology. 2007 Mar;18(2):128–34. doi.org/10.1111/j.1399-3038.2006.00484.x

Persky V, Piorkowski J, Hernandez E, Chavez N, Wagner-Cassanova C, Vergara C, et al. Prenatal exposure to acetaminophen and respiratory symptoms in the first year of life. Annals of Allergy, Asthma and Immunology. 2008;101(3):271–8. doi.org/10.1016/S1081- 1206(10)60492-9

Rebordosa C, Kogevinas M, Sørensen HT, Olsen J. Pre-natal exposure to paracetamol and risk of wheezing and asthma in children: A birth cohort study. Int J Epidemiol. 2008 Jun;37(3):583–90. doi.org/10.1093/ije/dyn070

Perzanowski MS, Miller RL, Tang D, Ali D, Garfinkel RS, Chew GL, et al. Prenatal acetaminophen exposure and risk of wheeze at age 5 years in an urban low-income cohort. Thorax. 2010;65(2):118–23. doi.org/10.1136/thx.2009.121459

Shaheen SO, Newson RB, Smith GD, Henderson AJ. Prenatal paracetamol exposure and asthma: Further evidence against confounding. Int J Epidemiol. 2010 Mar 30;39(3):790–4. doi.org/10.1093/ije/dyq049

Goksör E, Thengilsdottir H, Alm B, Norvenius G, Wennergren G. Prenatal paracetamol exposure and risk of wheeze at preschool age. Acta Paediatrica, International Journal of Paediatrics. 2011 Dec;100(12):1567–71. doi.org/10.1111/j.1651-2227.2011.02403.x

Andersen ABT, Farkas DK, Mehnert F, Ehrenstein V, Erichsen R. Use of prescription paracetamol during pregnancy and risk of asthma in children: A population-based Danish cohort study. Clin Epidemiol. 2012;4(1):33–40. doi.org/10.2147/CLEP.S28312

Sordillo JE, Scirica C V., Rifas-Shiman SL, Gillman MW, Bunyavanich S, Camargo CA, et al. Prenatal and infant exposure to acetaminophen and ibuprofen and the risk for wheeze and asthma in children. Journal of Allergy and Clinical Immunology. 2015 Feb 1;135(2):441–8. doi.org/10.1016/j.jaci.2014.07.065

Migliore E, Zugna D, Galassi C, Merletti F, Gagliardi L, Rasero L, et al. Prenatal paracetamol exposure and wheezing in childhood: Causation or confounding? PLoS One. 2015 Aug 25;10(8). doi.org/10.1371/journal.pone.0135775

Liu X, Liew Z, Olsen J, Pedersen LH, Bech BH, Agerbo E, et al. Association of prenatal exposure to acetaminophen and coffee with childhood asthma. Pharmacoepidemiol Drug Saf. 2016 Feb 1;25(2):188–95. doi.org/10.1002/pds.3940

Magnus MC, Karlstad Ø, Håberg SE, Nafstad P, Davey Smith G, Nystad W. Prenatal and infant paracetamol exposure and development of asthma: The Norwegian Mother and Child Cohort Study. Int J Epidemiol. 2016 Apr 11;45(2):512–22. doi.org/10.1093/ije/dyv366

Liew Z, Yuan Y, Meng Q, von Ehrenstein OS, Cui X, Flores MES, et al. Prenatal exposure to acetaminophen and childhood asthmatic symptoms in a population-based cohort in Los Angeles, California. Int J Environ Res Public Health. 2021 Oct 1;18(19). doi.org/10.3390/ijerph181910107

Piler P, Švancara J, Kukla L, Pikhart H. Role of combined prenatal and postnatal paracetamol exposure on asthma development: the Czech ELSPAC study. J Epidemiol Community Health (1978). 2018 Apr 1;72(4):349–55. doi.org/10.1136/jech-2017-209960

Shaheen SO, Lundholm C, Brew BK, Almqvist C. Prescribed analgesics in pregnancy and risk of childhood asthma. European Respiratory Journal. 2019 May 1;53(5). doi: 10.1183/13993003.01090-2018

International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee T. Worldwide variation in prevalence of symptoms of asthma allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet. 1998;351(9111):1225–32. https://pubmed.ncbi.nlm.nih.gov/9643741/

Asher MI, Montefort S, Björkstén B, Lai CKW, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. The lancet. 2006;368(9537):733–43. doi.org/10.1016/S0140-6736(06)69283-0

Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ, et al. Asthma and wheezing in the first six years of life. New England Journal of Medicine. 1995;332(3):133–8. doi: 10.1056/NEJM19950119332030

Bisgaard H, Szefler S. Prevalence of asthma‐like symptoms in young children. Pediatr Pulmonol. 2007;42(8):723–8. doi.org/10.1002/ppul.20644

Garcia‐Marcos L, Mallol J, Solé D, Brand PLP, Group ES. International study of wheezing in infants: risk factors in affluent and non‐affluent countries during the first year of life. Pediatric Allergy and Immunology. 2010;21(5):878–88. doi.org/10.1111/j.1399- 3038.2010.01035.x

Diamond NB, Armson MJ, Levine B. The Truth Is Out There: Accuracy in Recall of Verifiable Real-World Events. Psychol Sci. 2020 Dec 1;31(12):1544–56. doi.org/10.1177/09567976209548

Finnell RH. Teratology: general considerations and principles. Journal of allergy and clinical immunology. 1999;103(2):S337–42. doi.org/10.1016/S0091-6749(99)70259-9

Bánhidy F, Lowry RB, Czeizel AE. Risk and benefit of drug use during pregnancy. Int J Med Sci. 2005;2(3):100. doi: 10.7150/ijms.2.100

Kang EM, Lundsberg LS, Illuzzi JL, Bracken MB. Prenatal exposure to acetaminophen and asthma in children. Obstetrics and Gynecology. 2009 Dec;114(6):1295–306. doi: 10.1097/AOG.0b013e3181c225c0

Bakkeheim E, Mowinckel P, Carlsen KH, Håland G, Carlsen KCL. Paracetamol in early infancy: The risk of childhood allergy and asthma. Acta Paediatrica, International Journal of Paediatrics. 2011;100(1):90–6. doi.org/10.1111/j.1651-2227.2010.01942.x

Källén B, Finnström O, Nygren KG, Otterblad Olausson P. Maternal drug use during pregnancy and asthma risk among children. Pediatric Allergy and Immunology. 2013 Feb;24(1):28–32. doi.org/10.1111/pai.12034

Nitsche JF, Patil AS, Langman LJ, Penn HJ, Derleth D, Watson WJ, et al. Transplacental passage of acetaminophen in term pregnancy. Am J Perinatol. 2017;34(06):541–3. doi: 10.1055/s-0036-1593845

Mian P, Allegaert K, Conings S, Annaert P, Tibboel D, Pfister M, et al. Integration of placental transfer in a foetal–maternal physiologically based pharmacokinetic model to characterize acetaminophen exposure and metabolic clearance in the fetus. Clin Pharmacokinet. 2020;59:911–25. doi.org/10.1007/s40262-020-00861-7

Kane S V, Acquah LA. Placental transport of immunoglobulins: a clinical review for gastroenterologists who prescribe therapeutic monoclonal antibodies to women during conception and pregnancy. Official journal of the American College of Gastroenterology| ACG. 2009;104(1):228–33. doi:10.1038/ajg.2008.71

Kouthouridis S, Sotra A, Khan Z, Alvarado J, Raha S, Zhang B. Modeling the Progression of Placental Transport from Early‐to Late‐Stage Pregnancy by Tuning Trophoblast Differentiation and Vascularization. Adv Healthc Mater. 2023;12(32):2301428. doi.org/10.1002/adhm.202301428

Lebold KM, Jacoby DB, Drake MG. Inflammatory mechanisms linking maternal and childhood asthma. Journal of Leucocyte Biology. 2020;108(1):113–21. doi.org/10.1002/JLB.3MR1219-338R

Robinson JL, Gatford KL, Bailey DN, Roff AJ, Clifton VL, Morrison JL, et al. Preclinical models of maternal asthma and progeny outcomes: a scoping review. European Respiratory Review. 2024;33(171). doi: 10.1183/16000617.0174-2023

Lim RH, Kobzik L, Dahl M. Risk for asthma in offspring of asthmatic mothers versus fathers: a meta-analysis. PLoS One. 2010;5(4):e10134. doi.org/10.1371/journal.pone.0010134

Robinson JL, Gatford KL, Clifton VL, Morrison JL, Stark MJ. The impact of maternal asthma on the foetal lung: Outcomes, mechanisms and interventions. Paediatr Respir Rev. 2023; doi.org/10.1016/j.prrv.2023.12.004

Liu X, Agerbo E, Schlünssen V, Wright RJ, Li J, Munk-Olsen T. Maternal asthma severity and control during pregnancy and risk of offspring asthma. Journal of Allergy and Clinical Immunology. 2018;141(3):886–92. doi.org/10.1016/j.jaci.2017.05.016

Zairina E, Abramson MJ, McDonald CF, Li J, Dharmasiri T, Stewart K, et al. Telehealth to improve asthma control in pregnancy: a randomized controlled trial. Respirology. 2016;21(5):867–74. doi.org/10.1111/resp.12773

Brustad N, Olarini A, Kim M, Chen L, Ali M, Wang T, et al. Diet‐associated vertically transferred metabolites and risk of asthma, allergy, eczema, and infections in early childhood. Pediatric Allergy and Immunology. 2023;34(2):e13917. https://onlinelibrary.wiley.com/doi/10.1111/pai.13947

Huang M, Kelly RS, Chu SH, Kachroo P, Gürdeniz G, Chawes BL, et al. Maternal metabolome in pregnancy and childhood asthma or recurrent wheeze in the Vitamin D Antenatal Asthma Reduction Trial. Metabolites. 2021;11(2):65. doi.org/10.3390/metabo11020065

Surma S, Witek A. Coffee consumption during pregnancy—what the gynecologist should know? Review of the literature and clinical studies. Ginekol Pol. 2022;93(7):591–600. doi: 10.5603/GP.a2022.0061

Açıkalın B, Sanlier N. Coffee and its effects on the immune system. Trends Food Sci Technol. 2021;114:625–32. doi.org/10.1016/j.tifs.2021.06.023

Górecki M, Hallmann E. The antioxidant content of coffee and its in vitro activity as an effect of its production method and roasting and brewing time. Antioxidants. 2020;9(4):308. doi.org/10.3390/antiox9040308

Yuniarta TA, Handayani R. An Initial Investigation of the Potential of Robusta Coffee, Arabica Coffee, and Caffeine in Asthma Treatment through the Evaluation of 5-Lipoxygenase Inhibition Activity. Borneo Journal of Pharmacy. 2024;7(1):80–8. doi.org/10.33084/bjop.v7i1.4448

Loube JM, Gidner S, Venezia J, Ryan H, Neptune ER, Mitzner W, et al. Nebulized caffeine alleviates airway hyperresponsiveness in a murine asthma model. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2023;325(4):L500–7. doi.org/10.1152/ajplung.00065.2023

Van den Bergh BRH, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S, et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci Biobehav Rev. 2020;117:26–64. doi.org/10.1016/j.neubiorev.2017.07.003

Lafortune S, Laplante DP, Elgbeili G, Li X, Lebel S, Dagenais C, et al. Effect of natural disaster-related prenatal maternal stress on child development and health: a meta-analytic review. Int J Environ Res Public Health. 2021;18(16):8332. doi.org/10.3390/ijerph18168332

Urizar Jr GG, Muñoz RF. Role of maternal depression on child development: A prospective analysis from pregnancy to early childhood. Child Psychiatry Hum Dev. 2022;53(3):502–14. doi.org/10.1007/s10578-021-01138-1

McEwen BS. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol. 2008;583(2–3):174–85. doi.org/10.1016/j.ejphar.2007.11.071

Smaniotto TÂ, Casaril AM, de Andrade Lourenço D, Sousa FS, Seixas FK, Collares T, et al. Intranasal administration of interleukin-4 ameliorates depression-like behavior and biochemical alterations in mouse submitted to the chronic unpredictable mild stress: Modulation of neuroinflammation and oxidative stress. Psychopharmacology (Berl). 2023;240(4):935–50. doi.org/10.1007/s00213-023-06336-4

Okuyama K, Dobashi K, Miyasaka T, Yamazaki N, Kikuchi T, Sora I, et al. The involvement of glucocorticoids in psychological stress-induced exacerbations of experimental allergic asthma. Int Arch Allergy Immunol. 2014;163(4):297–306. doi.org/10.1159/000360577

Olsen PC, Kitoko JZ, Ferreira TP, De-Azevedo CT, Arantes AC, Martins ΜA. Glucocorticoids decrease Treg cell numbers in lungs of allergic mice. Eur J Pharmacol. 2015;747:52–8. doi.org/10.1016/j.ejphar.2014.11.034

Beijers R, Buitelaar JK, de Weerth C. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. Eur Child Adolesc Psychiatry. 2014;23:943–56. doi.org/10.1007/s00787-014-0566-3

Mathiesen L, Bay-Richter C, Wegener G, Liebenberg N, Knudsen LE. Maternal stress and placental function; ex vivo placental perfusion studying cortisol, cortisone, tryptophan and serotonin. PLoS One. 2020;15(6):e0233979. doi.org/10.1371/journal.pone.0233979

Tsartsali L, Papadopoulos M, Lagona E, Papadimitriou A, Kanaka-Gantenbein C, Louizou E, et al. Association of hypothalamic-pituitary-adrenal axis-related polymorphisms with stress in asthmatic children on inhaled corticosteroids. Neuroimmunomodulation. 2012;19(2):88–95. doi.org/10.1159/000329592

Chen W, Boutaoui N, Brehm JM, Han YY, Schmitz C, Cressley A, et al. ADCYAP1R1 and asthma in Puerto Rican children. Am J Respir Crit Care Med. 2013;187(6):584–8. doi.org/10.1164/rccm.201210-1789OC

Jager KJ, Zoccali C, Macleod A, Dekker FW. Confounding: what it is and how to deal with it. Kidney Int. 2008;73(3):256–60. doi.org/10.1038/sj.ki.5002650

Kahlert J, Gribsholt SB, Gammelager H, Dekkers OM, Luta G. Control of confounding in the analysis phase–an overview for clinicians. Clin Epidemiol. 2017;195–204. doi.org/10.2147/CLEP.S129886

Lu H, Cole SR, Howe CJ, Westreich D. Toward a clearer definition of selection bias when estimating causal effects. Epidemiology. 2022;33(5):699–706. doi: 10.1097/EDE.0000000000001516

McDonagh M, Peterson K, Raina P, et al. Avoiding Bias in Selecting Studies. 2013 Feb 20. In: Methods Guide for Effectiveness and Comparative Effectiveness Reviews [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK126701/

Mathur MB, VanderWeele TJ. Methods to address confounding and other biases in meta-analyses: review and recommendations. Annu Rev Public Health. 2022;43(1):19–35. doi.org/10.1146/annurev-publhealth-051920-114020

Choi H, Tabashidze N, Rossner Jr P, Dostal M, Pastorkova A, Kong SW, et al. Altered vulnerability to asthma at various levels of ambient Benzo [a] Pyrene by CTLA4, STAT4 and CYP2E1 polymorphisms. Environmental pollution. 2017;231:1134–44. doi.org/10.1016/j.envpol.2017.07.057

Dong H, Haining RL, Thummel KE, Rettie AE, Nelson SD. Involvement of human cytochrome P450 2D6 in the bioactivation of acetaminophen. Drug metabolism and disposition. 2000;28(12):1397–400. https://dmd.aspetjournals.org/content/28/12/1397.short

Krenkel O, Mossanen JC, Tacke F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg Nutr. 2014;3(6):331. doi: 10.3978/j.issn.2304- 3881.2014.11.01

Vomund S, Schäfer A, Parnham MJ, Brüne B, Von Knethen A. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017;18(12):2772. doi.org/10.3390/ijms18122772

Kennedy JL, Kurten RC, McCullough S, Panettieri RA, Koziol-White C, Jones SM, et al. Acetaminophen is both bronchodilatory and bronchoprotective in human precision cut lung slice airways. Xenobiotica. 2019;49(9):1106–1115. doi.org/10.1080/00498254.2018.1536814

Li Y, Hong X, Chandran A, Keet CA, Clish CB, Liang L, et al. Associations between cord blood acetaminophen biomarkers and childhood asthma with and without allergic comorbidities. Annals of Allergy, Asthma & Immunology. 2024;132(6):705–12. doi.org/10.1016/j.anai.2024.03.001

Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, et al. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 2021;22(23):12808. doi.org/10.3390/ijms222312808

Gumbrevičius G, Sveikata A, Sveikatienė R, Stankevičius E. Paracetamol and simvastatin: a potential interaction resulting in hepatotoxicity. Medicina (B Aires). 2012;48(7):56. doi.org/10.3390/medicina48070056

Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015;25(8):416–26. doi: 10.1097/FPC.0000000000000150

Li J, Chiew AL, Isbister GK, Duffull SB. Sulfate conjugation may be the key to hepatotoxicity in paracetamol overdose. Br J Clin Pharmacol. 2021;87(5):2392–6. doi.org/10.1111/bcp.14642

Kholili U, Nugroho YH, Sugihartono T, Nusi IA, Setiawan PB. Liver injury associated with Acetaminophen: A Review. Res J Pharm Technol. 2023;16(4):2006–12. doi: 10.52711/0974-360X.2023.00329

Yamada N, Komada T, Ohno N, Takahashi M. Acetaminophen-induced hepatotoxicity: different mechanisms of acetaminophen-induced ferroptosis and mitochondrial damage. Arch Toxicol. 2020;94:2255–7. doi.org/10.1007/s00204-020-02722-5

Rogers LK, Cismowski MJ. Oxidative stress in the lung–the essential paradox. Curr Opin Toxicol. 2018;7:37–43. doi.org/10.1016/j.cotox.2017.09.001

Kim SH, Choi HJ, Seo H, Kwon D, Yun J, Jung YS. Downregulation of glutathione- mediated detoxification capacity by binge drinking aggravates acetaminophen-induced liver injury through IRE1α ER stress signaling. Antioxidants. 2021;10(12):1949. doi.org/10.3390/antiox10121949

Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2005;569(1–2):101–10. doi.org/10.1016/j.mrfmmm.2004.04.021

Abdelmegeed MA, Moon KH, Chen C, Gonzalez FJ, Song BJ. Role of cytochrome P450 2E1 in protein nitration and ubiquitin-mediated degradation during acetaminophen toxicity. Biochem Pharmacol. 2010;79(1):57–66. doi.org/10.1016/j.bcp.2009.07.016

Hart SGE, Cartun RW, Wyand DS, Khairallah EA, Cohen SD. Immunohistochemical localization of acetaminophen in target tissues of the CD-1 mouse: correspondence of covalent binding with toxicity. Fundamental and Applied Toxicology. 1995;24(2):260–74. doi.org/10.1006/faat.1995.1029

Yang W, Liang Z, Wen C, Jiang X, Wang L. Silymarin protects against acute liver injury induced by acetaminophen by downregulating the expression and activity of the CYP2E1 enzyme. Molecules. 2022;27(24):8855. doi.org/10.3390/molecules27248855

Yim EY, Kang HR, Jung JW, Sohn SW, Cho SH. CYP1A2 polymorphism and theophylline clearance in Korean non-smoking asthmatics. Asia Pac Allergy. 2013;3(4):231–40. doi: 10.5415/apallergy.2013.3.4.231

Xu R, Deng H, Gan L, Zhong L, Deng Y, Wang Q, et al. Chinese herbal component, Praeruptorin E, enhances anti-asthma efficacy and prevents toxicity of aminophylline by targeting the NF-κB/PXR/CYP3A4 pathway. Ann Transl Med. 2022;10(4). doi: 10.21037/atm-22-386

Gum S Il, Cho MK. Recent updates on acetaminophen hepatotoxicity: the role of nrf2 in hepatoprotection. Toxicol Res. 2013;29:165–72. doi.org/10.5487/TR.2013.29.3.165

DeLeve LD, Kaplowitz N. Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther. 1991;52(3):287–305. doi.org/10.1016/0163-7258(91)90029-L

Han D, Hanawa N, Saberi B, Kaplowitz N. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2006;291(1):G1–7. doi.org/10.1152/ajpgi.00001.2006

Lu SC. Glutathione synthesis. Biochimica et Biophysica Acta (BBA)-General Subjects. 2013;1830(5):3143–53. doi.org/10.1016/j.bbagen.2012.09.008

Win S, Than TA, Kaplowitz N. c-Jun-N terminal kinase-mediated degradation of γ- glutamylcysteine ligase catalytic subunit inhibits GSH recovery after acetaminophen treatment: role in sustaining JNK activation and liver injury. Antioxid Redox Signal. 2023;38(16):1071–81. doi.org/10.1089/ars.2022.0119

Pang C, Zheng Z, Shi L, Sheng Y, Wei H, Wang Z, et al. Caffeic acid prevents acetaminophen-induced liver injury by activating the Keap1-Nrf2 antioxidative defense system. Free Radic Biol Med. 2016;91:236–46. doi.org/10.1016/j.freeradbiomed.2015.12.024

Zhang X, Long F, Li R, Yang Y, Wang T, He Q, et al. Tanshinone IIA prevents acetaminophen‐induced nephrotoxicity through the activation of the Nrf2‐Mrp2/4 pathway in mice. Environ Toxicol. 2022;37(7):1618–28. doi.org/10.1002/tox.23511

Zainal NHM, Nor NHM, Saat A, Clifton VL. Childhood allergy susceptibility: The role of the immune system development in the in-utero period. Hum Immunol. 2022;83(5):437–46. doi.org/10.1016/j.humimm.2022.02.002

León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. Frontiers in Allergy. 2023;3:1080153. doi.org/10.3389/falgy.2022.1080153

León B, Ballesteros-Tato A. Modulating Th2 cell immunity for the treatment of asthma. Front Immunol. 2021;12:637948. doi.org/10.3389/fimmu.2021.637948

Brundu S, Palma L, Picceri GG, Ligi D, Orlandi C, Galluzzi L, et al. Glutathione depletion is linked with Th2 polarization in mice with a retrovirus-induced immunodeficiency syndrome, murine AIDS: role of proglutathione molecules as immunotherapeutics. J Virol. 2016;90(16):7118–30. doi.org/10.1128/jvi.00603-16

Fitzpatrick AM, Jones DP, Brown LAS. Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012;17(2):375–408. doi.org/10.1089/ars.2011.4198

Brookhuis SAM, Allegaert K, Hanff LM, Lub-de Hooge MN, Dallmann A, Mian P. Modelling tools to characterize acetaminophen pharmacokinetics in the pregnant population. Pharmaceutics. 2021;13(8):1302.

McCrae JC, Morrison EE, MacIntyre IM, Dear JW, Webb DJ. Long‐term adverse effects of paracetamol–a review. Br J Clin Pharmacol. 2018;84(10):2218–30.

Karimi K, Keßler T, Thiele K, Ramisch K, Erhardt A, Huebener P, et al. Prenatal acetaminophen induces liver toxicity in dams, reduces fetal liver stem cells, and increases airway inflammation in adult offspring. J Hepatol. 2015;62(5):1085–91.

Xu B, Pekkanen J, Järvelin MR, Olsen P, Hartikainen AL. Maternal infections in pregnancy and the development of asthma among offspring. Int J Epidemiol. 1999;28(4):723–7.