Toxic Effects of p-Cresyl sulfate and Indoxyl Sulfate on Bone: A Systematic Review
Main Article Content
Abstract
Chronic kidney disease (CKD) causes the accumulation of uremic toxins such as indoxyl sulfate (IS) and p-cresyl sulfate (pCS), leading to bone mineral disorders due to a dysfunction in the equilibrium between bone formation and resorption. Herein, we aimed to review and compile recent experimental and clinical studies that demonstrated the effect of pCS and IS on bone at the system, cellular, and molecular levels.Materials and methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, a systematic review was performed using three electronic databases to appraise literature published between January 2005 to June 2023 on the effects of IS and pCS on bone. Results: Twenty-two relevant articles were included: 11 in vitro, 5 animal studies and 6 patient-based. IS and pCS induce toxic effects in bone cells by influencing cell viability, differentiation, proliferation, oxidative stress, and cell death, leading to bone morphometry alterations and low bone turnover. Higher doses of IS are needed to induce bone toxic effects compared to pCS. IS and pCS affect bone cells by upregulating sclerostin and decreasing levels of DMP-1, both vital for bone mineralization. Therapeutic interventions are available to reverse the toxic effects of IS and pCS on bone, namely probenecid, pravastatin, resveratrol and AST-120. IS and pCS also potentially serve as biomarkers for CKD-related bone diseases. Conclusion: The available evidence shows IS and pCS induce toxic effects on bone through various mechanisms. Further in-depth mechanistic studies are warranted to elucidate their underlying mechanisms in inducing bone changes.
Downloads
Article Details
References
Keung L, Perwad F. Vitamin D and kidney disease. Bone Rep. 2018;9:93-100. doi: 10.1016/j.bonr.2021.101084.2. Lim WH, Kireta S, Russ GR, Coates PT. Uremia impairs blood dendritic cell function in hemodialysis patients. Kidney Int. 2007;71(11):1122-31. doi: 10.1038/sj.ki.5002196.
Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int. 2015;2015:421746. doi: 10.1155/2015/421746.
Bultink IE, Lems WF. Osteoarthritis and osteoporosis: what is the overlap? Curr Rheumatol Rep. 2013;15(5):328. doi: 10.1007/s11926-013-0328-0.
Falconi CA, Junho CVDC, Fogaça-Ruiz F, Vernier ICS, Da Cunha RS, Stinghen AEM, et al. Uremic toxins: an alarming danger concerning the cardiovascular system. Front Physiol. 2021;12:686249. doi: 10.3389/fphys.2021.686249.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906. doi: 10.1016/j.ijsu.2021.105906.
Kim YH, Kwak KA, Gil HW, Song HY, Hong SY. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells. BMC Pharmacol Toxicol. 2013;14:60. doi: 10.1186/2050-6511-14-60.
Nii-Kono T, Iwasaki Y, Uchida M, Fujieda A, Hosokawa A, Motojima M, et al. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007;71(8):738-43. doi: 10.1038/sj.ki.5002097.
Iwasaki Y, Yamato H, Fukagawa M. Treatment with pravastatin attenuates oxidative stress and protects osteoblast cell viability from indoxyl sulfate. Ther Apher Dial. 2011;15(2):151-5. doi: 10.1111/j.1744-9987.2010.00888.x.
Tanaka H, Iwasaki Y, Yamato H, Mori Y, Komaba H, Watanabe H, et al. p-cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone. 2013;56(2):347-54. doi: 10.1016/j.bone.2013.07.002.
Watanabe K, Tominari T, Hirata M, Matsumoto C, Hirata J, Murphy G, et al. Indoxyl sulfate, a uremic toxin in chronic kidney disease, suppresses both bone formation and bone resorption. FEBS Open Bio. 2017;7(8):1178-85. doi: 10.1002/2211-5463.12258.
Liu WC, Shyu JF, Lin YF, Chiu HW, Lim PS, Lu CL, et al. Resveratrol rescue indoxyl sulfate-induced deterioration of osteoblastogenesis via the aryl hydrocarbon receptor/MAPK pathway. Int J Mol Sci. 2020;21(20):7483. doi: 10.3390/ijms21207483.
Mozar A, Louvet L, Godin C, Mentaverri R, Brazier M, Kamel S, et al. Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol Dial Transplant. 2012;27(6):2176-81. doi: 10.1093/ndt/gfr647.
Liu WC, Shyu JF, Lim PS, Fang TC, Lu CL, Zheng CM, et al. Concentration and duration of indoxyl sulfate exposure affects osteoclastogenesis by regulating NFATc1 via aryl hydrocarbon receptor. Int J Mol Sci. 2020;21(10):3486. doi: 10.3390/ijms21103486.
Lanza D, Perna AF, Oliva A, Vanholder R, Pletinck A, Guastafierro S, et al. Impact of the uremic milieu on the osteogenic potential of mesenchymal stem cells. PLOS ONE. 2015;10(1):e0116468. doi: 10.1371/journal.pone.0116468.
Kamprom W, Tawonsawatruk T, Mas-Oodi S, Anansilp K, Rattanasompattikul M, Supokawej A. P-cresol and indoxyl sulfate impair osteogenic differentiation by triggering mesenchymal stem cell senescence. Int J Med Sci. 2021;18(3):744-55. doi: 10.7150/ijms.48492.
Watanabe H, Sakaguchi Y, Sugimoto R, Kaneko KI, Iwata H, Kotani S, et al. Human organic anion transporters function as a high-capacity transporter for p-cresyl sulfate, a uremic toxin. Clin Exp Nephrol. 2014;18(5):814-20. doi: 10.1007/s10157-013-0902-9.
Hirata J, Hirai K, Asai H, Matsumoto C, Inada M, Miyaura C, et al. Indoxyl sulfate exacerbates low bone turnover induced by parathyroidectomy in young adult rats. Bone. 2015;79:252-8. doi: 10.1016/j.bone.2015.06.010.
Iwasaki Y, Kazama JJ, Yamato H, Shimoda H, Fukagawa M. Accumulated uremic toxins attenuate bone mechanical properties in rats with chronic kidney disease. Bone. 2013;57(2):477-83. doi: 10.1016/j.bone.2013.07.037.
Meng F, Fan L, Sun L, Yu Q, Wang M, Sun C. Serum biomarkers of the calcium-deficient rats identified by metabolomics based on UPLC/Q-TOF MS/MS. Nutr Metab (Lond). 2020;17(1):99. doi: 10.1186/s12986-020-00507-2.
Iwasaki Y, Yamato H, Nii-Kono T, Fujieda A, Uchida M, Hosokawa A, et al. Administration of oral charcoal adsorbent (AST-120) suppresses low-turnover bone progression in uraemic rats. Nephrol Dial Transplant. 2006;21(10):2768-74. doi: 10.1093/ndt/gfl311.
Nam M, Huh JE, Kim MS, Ryu DH, Park J, Kim HS, et al. Metabolic alterations in the bone tissues of aged osteoporotic mice. Sci Rep. 2018;8(1):8127. doi: 10.1038/s41598-018-26322-7.
Desjardins L, Liabeuf S, Oliveira RB, Louvet L, Kamel S, Lemke HD, et al. Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol Ther. 2014;10(6):463-70. doi: 10.1016/j.nephro.2014.04.002.
Chang JF, Hsieh CY, Liou JC, Lu KC, Zheng CM, Wu MS, et al. Circulating p-cresyl sulfate, non-hepatic alkaline phosphatase and risk of bone fracture events in chronic kidney disease-mineral bone disease. Toxins. 2021;13(7):479. doi: 10.3390/toxins13070479.
Goto S, Fujii H, Hamada Y, Yoshiya K, Fukagawa M. Association between indoxyl sulfate and skeletal resistance in hemodialysis patients. Ther Apher Dial. 2010;14(4):417-23. doi: 10.1111/j.1744-9987.2010.00813.x.
Yoon CY, Park J, Seo C, Nam BY, Kim S, Kee YK, et al. Low dentin matrix protein 1 is associated with incident cardiovascular events in peritoneal dialysis patients. J Bone Miner Res. 2016;31(12):2149-58. doi: 10.1002/jbmr.2907.
Lin CJ, Pan CF, Chuang CK, Liu HL, Sun FJ, Wang TJ, et al. Association of indoxyl sulfate with fibroblast growth factor 23 in patients with advanced chronic kidney disease. Am J Med Sci. 2014;347(5):370-6. doi: 10.1097/MAJ.0b013e3182989f26.
Barreto FC, Barreto DV, Canziani ME, Tomiyama C, Higa A, Mozar A, et al. Association between indoxyl sulfate and bone histomorphometry in pre-dialysis chronic kidney disease patients. J Bras Nefrol. 2014;36(3):289-96. doi: 10.5935/0101-2800.20140042.
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83-123. doi: 10.1152/physrev.00025.2013.
Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017;14(2):209-16. doi: 10.11138/ccmbm/2017.14.1.209.
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763.
Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA. Apoptosis: definition, mechanisms, and relevance to disease. Am J Med. 1999 ;107(5):489-506. doi: 10.1016/s0002-9343(99)00259-4.
Shyu JF, Liu WC, Zheng CM, Fang TC, Hou YC, Chang CT, et al. Toxic effects of indoxyl sulfate on osteoclastogenesis and osteoblastogenesis. Int J Mol Sci. 2021;22(20):11265. doi: 10.3390/ijms222011265.
Rauner M, Taipaleenmäki H, Tsourdi E, Winter EM. Osteoporosis treatment with anti-sclerostin antibodies-mechanisms of action and clinical application. J Clin Med. 2021;10(4):787. doi: 10.3390/jcm10040787.
Dussold C, Gerber C, White S, Wang X, Qi L, Francis C, et al. DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease. Bone Res. 2019;7(1):12. doi: 10.1038/s41413-019-0051-1.
OHAT N. OHAT risk of bias rating tool for human and animal studies. Washington DC: US Department of Health and Human Services; 2015. Available from: https://ntp.niehs.nih.gov/sites/default/files/ntp/ohat/pubs/riskofbiastool_508.pdf