The Effect of Topical Nano Albumin Administration on Mast Cell Number and Burn Healing Area Reduction

Main Article Content

Handayu Ganitafuri
Purwoko
Faizal Muhammad
Bambang Novianto Putro
Ardana Tri Arianto
Heri Dwi Purnomo

Abstract

Introduction: Topical application of amino acid compounds that are effective in burns can accelerate burn healing through proliferation, neovascularization, and re-epithelialization. However, research on the benefits of nano albumin is lacking. This animal study aims to examine and determine the effect of topical nano albumin on burn wound healing. Materials and methods: This pretest-posttest study examined 27 Wistar rats. Each group (n = 9) received topical application of different substances t.i.d. for seven days. Group-1 (G1) received aquadest, G2 received 1% silver sulfadiazine, and G3 received 0.1 mg topical nano albumin. Topical nano albumin was obtained from the extract of chicken egg albumen. The burn healing was measured by the mast cell number infiltration and burn area reduction. Statistical analysis used the paired t-test, unpaired t-test, one-way ANOVA and post-hoc test. Results: The pretest-posttest intervention showed that mast cell number reduction is G1 0.2% (p = 0.936), G2 12.8% (p = 0.006), and G3 27.4% (p = 0.001). The burns healing area reduction is G1 4.4% (p = 0.023), G2 11.1% (p = 0.018), and G3 17.2% (p = 0.011). Furthermore, the comparison of all intergroup mast cell reduction showed significant differences (p < 0.05). Meanwhile, the burns healing area reduction of G1 (0.09 ± 0.08 cm) vs. G3 (0.34 ± 0.17 cm) is the only significant result (p = 0.001). Conclusion: Topical nano albumin of 0.1 mg t.i.d. for seven days is more effective and significant in reducing mast cell number infiltration and burns healing area compared to 1% silver sulfadiazine and aquadest.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ganitafuri, H., Purwoko, Muhammad, F., Putro, B. N., Arianto, A. T., & Purnomo, H. D. (2025). The Effect of Topical Nano Albumin Administration on Mast Cell Number and Burn Healing Area Reduction. Malaysian Journal of Medicine and Health Sciences, 21(5), 91–94. https://doi.org/10.47836/mjmhs.21.5.12
Section
Original Articles

References

Markiewicz-Gospodarek A, Kozioł M, Tobiasz M, Baj J, Radzikowska-Büchner E, Przekora A. Burn Wound Healing: Clinical Complications, Medical Care, Treatment, and Dressing Types: The Current State of Knowledge for Clinical Practice. *Int J Environ Res Public Health* 2022;19:1338. [https://doi.org/10.3390/ijerph19031338](https://doi.org/10.3390/ijerph19031338).

Burgess M, Valdera F, Varon D, Kankuri E, Nuutila K. The Immune and Regenerative Response to Burn Injury. *Cells* 2022;11:3073. [https://doi.org/10.3390/cells11193073](https://doi.org/10.3390/cells11193073).

Atiakshin D, Soboleva M, Nikityuk D, Alexeeva N, Klochkova S, Kostin A, et al. Mast Cells in Regeneration of the Skin in Burn Wound with Special Emphasis on Molecular Hydrogen Effect. *Pharmaceuticals* 2023;16:348. [https://doi.org/10.3390/ph16030348](https://doi.org/10.3390/ph16030348).

Dong X, Geng Z, Zhao Y, Chen J, Cen Y. Involvement of mast cell chymase in burn wound healing in hamsters. *Exp Ther Med* 2013;5:643–7. [https://doi.org/10.3892/etm.2012.836](https://doi.org/10.3892/etm.2012.836).

Datta PK, Roy Chowdhury S, Aravindan A, Saha S, Rapaka S. Medical and Surgical Care of Critical Burn Patients: A Comprehensive Review of Current Evidence and Practice. *Cureus* 2022. [https://doi.org/10.7759/cureus.31550](https://doi.org/10.7759/cureus.31550).

Abul Barkat H, Abul Barkat M, Ali R, Hadi H, Kasmuri AR. Old Wine in new Bottles: Silver Sulfadiazine Nanotherapeutics for Burn Wound Management. *Int J Low Extrem Wounds* 2023:153473462311669. [https://doi.org/10.1177/15347346231166980](https://doi.org/10.1177/15347346231166980).

Yap P-G, Gan C-Y. Chicken Egg White—Advancing from Food to Skin Health Therapy: Optimization of Hydrolysis Condition and Identification of Tyrosinase Inhibitor Peptides. *Foods* 2020;9:1312. [https://doi.org/10.3390/foods9091312](https://doi.org/10.3390/foods9091312).

Lauterbach AL, Wallace RP, Alpar AT, Refvik KC, Reda JW, Ishihara A, et al. Topically-applied collagen-binding serum albumin-fused interleukin-4 modulates wound microenvironment in non-healing wounds. *NPJ Regen Med* 2023;8:49. [https://doi.org/10.1038/s41536-023-00326-y](https://doi.org/10.1038/s41536-023-00326-y).

Belinskaia DA, Jenkins RO, Goncharov NV. Serum Albumin in Health and Disease: From Comparative Biochemistry to Translational Medicine. *Int J Mol Sci* 2023;24:13725. [https://doi.org/10.3390/ijms241813725](https://doi.org/10.3390/ijms241813725).

Mensah RA, Trotta F, Briggs E, Sharifulden NS, Silva LVB, Keskin-Erdogan Z, et al. A Sustainable, Green-Processed, Ag-Nanoparticle-Incorporated Eggshell-Derived Biomaterial for Wound-Healing Applications. *J Funct Biomater* 2023;14:450. [https://doi.org/10.3390/jfb14090450](https://doi.org/10.3390/jfb14090450).

Tong S, Li Q, Liu Q, Song B, Wu J. Recent advances of the nanocomposite hydrogel as a local drug delivery for diabetic ulcers. *Front Bioeng Biotechnol* 2022;10. [https://doi.org/10.3389/fbioe.2022.1039495](https://doi.org/10.3389/fbioe.2022.1039495).

Hanafi M, Muhammad F, Ramadhani A, Laela N, Sofro ZM, Partadiredja G. Subchronic Administration of High-dose Monosodium Glutamate Causes Spatial Memory Dysfunction and Structural Deficits of Rat Hippocampus. *Malays J Med Health Sci* 2023;19. [https://doi.org/10.47836/mjmhs.19.4.24](https://doi.org/10.47836/mjmhs.19.4.24).

Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. *Cancer Drug Resist* 2020. [https://doi.org/10.20517/cdr.2020.68](https://doi.org/10.20517/cdr.2020.68).

Mousazadeh S, Amniattalab A. Evaluation of Potential Effect of Bone Marrow Mast Cells on Burn Wound Healing in Rat. *Iran Vet Sci Assoc* 2024;19:82–8. [https://doi.org/10.30500/ivsa.2024.446910.1392](https://doi.org/10.30500/ivsa.2024.446910.1392).

van de Wouw J, Joles JA. Albumin is an interface between blood plasma and cell membrane, and not just a sponge. *Clin Kidney J* 2022;15:624–34. [https://doi.org/10.1093/ckj/sfab194](https://doi.org/10.1093/ckj/sfab194).

Sheinenzon A, Shehadeh M, Michelis R, Shaoul E, Ronen O. Serum albumin levels and inflammation. *Int J Biol Macromol* 2021;184:857–62. [https://doi.org/10.1016/j.ijbiomac.2021.06.140](https://doi.org/10.1016/j.ijbiomac.2021.06.140).

Levitt D, Levitt M. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. *Int J Gen Med* 2016;9:229–55. [https://doi.org/10.2147/IJGM.S102819](https://doi.org/10.2147/IJGM.S102819).

Ali S, Singh A, Mahdi A, Srivastava R, Shantanu K. Does serum albumin level affect the healing outcomes of simple diaphyseal tibial fractures? *Saudi J Med Med Sci* 2016;4:93. [https://doi.org/10.4103/1658-631X.178321](https://doi.org/10.4103/1658-631X.178321).