Polyhydroxyalkanoate and Stingless Bee ‘kelulut’ Propolis Improve Skin Wound Healing in Streptozotocin-induced Diabetic Rats

Main Article Content

Samar Abdelrazeg
Mohamed Salih
Hasmah Hussin
Eshaifol Azam Omar
Manoj Lakshmanan
Kumar Sudesh
Bakiah Shaharuddin

Abstract

Introduction: Chronic skin wounds in patients with serious medical conditions can significantly impact their clinical, social, and economic wellbeing. Diabetic wounds often become chronic due to infection and poor circulation. Currently, there is a lack of treatment options on effective wound management in these complex conditions. This study evaluates wound dressing patches made from polyhydroxyalkanoate (PHA) and stingless bee propolis in experimental diabetic rats. Materials and methods: PHA and propolis were evaluated in vitro as biocompatible wound dressing materials by studying human dermal fibroblast (HDF) viability, cellular migration, gene expression and PHA haemocompatibility. PHA and propolis were evaluated in vivo to treat burn wounds in Streptozotocin (STZ)-induced diabetic rats. Results: The HDF scratch migration assay was significantly enhanced in culture media containing 10 μg/mL propolis at three time points (P < 0.05). PHA displayed good haemocompatibility (3.3%) and a high absorption capacity (1200%), while its water contact angle indicated slight hydrophobicity. SEM analysis showed that the PHA+propolis and propolis-only groups had an average pore size of 150 μm. VEGF and b-FGF gene expressions in HDF cultured on various materials were higher in the PHA+propolis and propolis-only groups, though differences were not statistically significant (P > 0.05). In vivo, PHA+propolis patches exhibited significant wound contraction and healing via scab formation in burn wounds. Conclusion: The combination of PHA and propolis demonstrated promising results in treating experimental wounds in diabetic rats, suggesting it could be a low-cost, safe, and effective option for managing complex skin wounds.

Downloads

Download data is not yet available.

Article Details

How to Cite
Abdelrazeg, S., Salih, M., Hussin, H., Omar, E. A., Lakshmanan, M., Sudesh, K., & Shaharuddin, B. (2025). Polyhydroxyalkanoate and Stingless Bee ‘kelulut’ Propolis Improve Skin Wound Healing in Streptozotocin-induced Diabetic Rats. Malaysian Journal of Medicine and Health Sciences, 21(5), 203–213. https://doi.org/10.47836/mjmhs.21.5.24
Section
Original Articles

References

Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence. N Engl J Med. 2017;376(24):2367–75. doi: 10.1056/NEJMra1615439.

Stern D, Cui H. Crafting Polymeric and Peptidic Hydrogels for Improved Wound Healing. Adv Healthc Mater. 2019;8(9):1–17. doi: 10.1002/adhm.201900104.

Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463(2):127–36. doi: 10.1016/j.ijpharm.2013.12.015.

Schilrreff P, Alexiev U. Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int J Mol Sci. 2022;23(9). doi: 10.3390/ijms23094928.

Dasari N, Jiang A, Skochdopole A, Chung J, Reece EM, Vorstenbosch J, et al. Updates in Diabetic Wound Healing, Inflammation, and Scarring. Semin Plast Surg. 2021;35(3):153–8. doi: 10.1055/s-0041-1731460.

Spampinato SF, Caruso GI, Pasquale R De, Sortino MA, Merlo S. The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. 2020;1–17. doi: 10.3390/ph13040060.

Maleki H, Gharehaghaji AA, Dijkstra PJ. A novel honey-based nanofibrous scaffold for wound dressing application. J Appl Polym Sci. 2013;127(5):4086–92. doi: 10.1002/app.37601.

Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26(33):6565–78. doi: 10.1016/j.biomaterials.2005.04.036.

Mukherjee A, Koller M. Microbial PolyHydroxyAlkanoate (PHA) Biopolymers—Intrinsically Natural. Bioengineering. 2023;10(7):1–16. doi: 10.3390/bioengineering10070855.

Volova TG, Shumilova AA, Nikolaeva ED, Kirichenko AK, Shishatskaya EI. Biotechnological wound dressings based on bacterial cellulose and degradable copolymer P(3HB/4HB). Int J Biol Macromol. 2019;131:230–40. doi: 10.1016/j.ijbiomac.2019.03.068.

Kalaoglu-altan OI, Baskan H, Meireman T, Basnett P, Azimi B, Fusco A, et al. Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications. 2021;14(17):4907. doi: 10.3390/ma14174907.

Marcucci MC. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie. 1995;26(2):83–99. doi: 10.3390/molecules28010141.

Choudhari MK, Punekar SA, Ranade RV, Paknikar KM. Antimicrobial activity of stingless bee (Trigona sp.) propolis used in the folk medicine of Western Maharashtra, India. J Ethnopharmacol. 2012;141(1):363–7. doi: 10.1016/j.jep.2012.02.047.

Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, Popov S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol. 1999;64(3):235–40. doi: 10.1016/s0378-8741(98)00131-7.

Teixeira ÉW, Message D, Negri G, Salatino A, Stringheta PC. Seasonal variation, chemical composition and antioxidant activity of brazilian propolis samples. Evidence-based Complement Altern Med. 2010;7(3):307–15. doi: 10.1093/ecam/nem177.

Umthong S, Puthong S, Chanchao C. Trigona laeviceps propolis from Thailand: Antimicrobial, antiproliferative and cytotoxic activities. Am J Chin Med. 2009;37(5):855–65. doi: 10.1142/S0192415X09007338.

Pahlavani N, Malekahmadi M, Firouzi S, Rostami D, Sedaghat A, Moghaddam AB, et al. Molecular and cellular mechanisms of the effects of Propolis in inflammation, oxidative stress and glycemic control in chronic diseases. Nutr Metab. 2020;17(1):1–12. doi: 10.1186/s12986-020-00485-5.

Syed Salleh SNA, Mohd Hanapiah NA, Ahmad H, Wan Johari WL, Osman NH, Mamat MR. Determination of Total Phenolics, Flavonoids, and Antioxidant Activity and GC-MS Analysis of Malaysian Stingless Bee Propolis Water Extracts. Scientifica (Cairo). 2021;2021. doi: 10.1155/2021/3789351.

Kisiel MA, Klar AS. Isolation and culture of human dermal fibroblasts. Methods Mol Biol. 2019;1993:71–8. doi: 10.1007/978-1-4939-9473-1_6.

Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog Polym Sci. 2000;25(10):1503–55. doi: 10.1016/S0079-6700(00)00035-6.

Zubairi SI. Porous Three Dimensional (3-D) Scaffolds of Poly (3-Hydroxybutyric Acid) (PHB) and Poly (3-Hydroxybutyric-co-3-Hydroxyvaleric Acid) (PHBV): Determination of Salt Leaching Efficiency of Solvent-Casting Particulate-Leaching (SCPL). Advances in Environmental Biology. 2014;8(10):925–32.

Panico A, Paladini F, Pollini M. Development of regenerative and flexible fibroin-based wound dressings. J Biomed Mater Res B Appl Biomater. 2019;107(1):7–18. doi: 10.1002/jbm.b.34090.

Estevão L, Cassini-Vieira P, Leite AG, Bulhões A, Barcelos L da, Evêncio-Neto J. Morphological Evaluation of Wound Healing Events in the Excisional Wound Healing Model in Rats. Bio-Protocol. 2019;9(13):1–12. doi: 10.21769/BioProtoc.3285.

Karmann S, Follonier S, Bassas-Galia M, Panke S, Zinn M. Robust at-line quantification of poly(3-hydroxyalkanoate) biosynthesis by flow cytometry using a BODIPY 493/503-SYTO 62 double-staining. J Microbiol Methods. 2016;131:166–71. doi: 10.1016/j.mimet.2016.10.003.

Irigoiti Y, Navarro A, Yamul D, Libonatti C, Tabera A, Basualdo M. The use of propolis as a functional food ingredient: A review. Trends Food Sci Technol. 2021;115:297–306. doi: 10.1016/j.tifs.2021.06.041.

Ridiandries A, Tan JTM, Bursill CA. The role of chemokines in wound healing. Int J Mol Sci. 2018;19(10). doi: 10.3390/ijms19103217.

Singh S, Young A, McNaught CE. The physiology of wound healing. Surg (United Kingdom). 2017;35(9):473–7. doi: 10.1016/j.mpsur.2011.06.011.

Morilla-Herrera JC, Morales-Asencio JM, Gómez-González AJ, Díez-De Los Ríos A, Lupiáñez-Pérez I, Acosta-Andrade C, et al. Effectiveness of a hydrophobic dressing for microorganisms’ colonization of vascular ulcers: Protocol for a randomized controlled trial (CUCO-UV Study). J Adv Nurs. 2020;(March):2191–7. doi: 10.1111/jan.14412.

Fukazawa K, Nakao A, Maeda M, Ishihara K. Photoreactive Initiator for Surface-Initiated ATRP on Versatile Polymeric Substrates. ACS Appl Mater Interfaces. 2016;8(38):24994–8. doi: 10.1021/acsami.6b07145.

Chang CK, Wang HMD, Lan JCW. Investigation and characterization of plasma-treated poly(3-hydroxybutyrate) and s(3-hydroxybutyrateco-3-hydroxyvalerate) biopolymers for an in vitro cellular study of mouse adipose-derived stem cells. Polymers (Basel). 2018;10(4). doi: 10.3390/polym10040355.

Kim HS, Chen J, Wu LP, Wu J, Xiang H, Leong KW, et al. Prevention of excessive scar formation using nanofibrous meshes made of biodegradable elastomer poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Tissue Eng. 2020;11:2041731420949332. doi: 10.1177/2041731420949332.

Esmail A, Pereira JR, Zoio P, Silvestre S, Menda UD, Sevrin C, et al. Oxygen plasma treated-electrospun polyhydroxyalkanoate scaffolds for hydrophilicity improvement and cell adhesion. Polymers (Basel). 2021;13(7):1–17. doi: 10.3390/polym13071056.

Shishatskaya EI, Nikolaeva ED, Vinogradova ON, Volova TG. Experimental wound dressings of degradable PHA for skin defect repair. J Mater Sci Mater Med. 2016;27(11):0–1. doi: 10.1007/s10856-016-5776-4.

Shi Z, Yao C, Shui Y, Li S, Yan H. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front Physiol. 2023;14(November):1–11. doi: 10.3389/fphys.2023.1284981.

Adas G, Percem A, Adas M, Kemik O, Arikan S, Ustek D, et al. VEGF-A and FGF gene therapy accelerate healing of ischemic colonic anastomoses (experimental study). Int J Surg. 2011;9(6):467–71. doi: 10.1016/j.ijsu.2011.05.002.

Shishatskaya EI, Nikolaeva ED, Vinogradova ON, Volova TG. Experimental wound dressings of degradable PHA for skin defect repair. J Mater Sci Mater Med. 2016;27(11):0–1. doi: 10.1007/s10856-016-5776-4.

Zarei M, Jafarian AH, Harandi A, Javidi M, Gharechahi M. Evaluation of the expression of VIII factor and VEGF in the regeneration of non-vital teeth in dogs using propolis. Iran J Basic Med Sci. 2017;20(2):172–7. doi: 10.22038/ijbms.2017.8243.

Kresnoadi U, Widjaja J, Laksono H. Ethanol extract of propolis-bovine bone graft combination as a prospective candidate for socket preservation: Enhancing BMP7 and decreasing NFATc1. Saudi Dent J. 2021;33(8):1055–62. doi: 10.1016/j.sdentj.2021.05.003.

Daleprane JB, Abdalla DS. Emerging roles of propolis: Antioxidant, cardioprotective, and antiangiogenic actions. Evidence-based Complement Altern Med. 2013;2013:1–10. doi: 10.1155/2013/175135.

Wojtyczka RD, Dziedzic A, Idzik D, Kepa M, Kubina R, Kabała-Dzik A, et al. Susceptibility of Staphylococcus aureus clinical isolates to propolis extract alone or in combination with antimicrobial drugs. Molecules. 2013;18(8):9623–40. doi: 10.3390/molecules18089623.

Jacob A, Parolia A, Pau A, Davamani Amalraj F. The effects of Malaysian propolis and Brazilian red propolis on connective tissue fibroblasts in the wound healing process. BMC Complement Altern Med. 2015;15(1):1–10. doi: 10.1186/s12906-015-0814-1.

Cheng KY, Lin ZH, Cheng YP, Chiu HY, Yeh NL, Wu TK, et al. Wound Healing in Streptozotocin-Induced Diabetic Rats Using Atmospheric-Pressure Argon Plasma Jet. Sci Rep. 2018;8(1):1–15. doi: 10.1038/s41598-018-30597-1.

Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc Pharmacol. 2015;70(1):5.47.1–5.47.20. doi: 10.1002/0471141755.ph0547s70.

Karina K, Biben JA, Ekaputri K, Rosadi I, Rosliana I, Afini I, et al. In vivo study of wound healing processes in Sprague-Dawley model using human mesenchymal stem cells and platelet-rich plasma. Biomed Res Ther. 2021;8(4):4315–23. doi: 10.15419/bmrat.v8i4.670.

Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ. The murine excisional wound model: Contraction revisited. Wound Repair Regen. 2015;23(6):874–7. doi: 10.1111/wrr.12338.

Jahandideh M, Hajimehdipoor H, Mortazavi SA, Dehpour A, Hassanzadeh G. Evaluation of the wound healing activity of a traditional compound herbal product using rat excision wound model. Iran J Pharm Res. 2017;16(April 2015):153–63.

Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, et al. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol Rev. 2019;14(1):50–9. doi: 10.15420/ecr.2018.33.1.

Oryan A, Alemzadeh E, Moshiri A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed Pharmacother. 2018;98(December 2017):469–83. doi: 10.1016/j.biopha.2017.12.069.

Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HPS, Amirul AA. Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P(3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing. Mater Sci Eng C. 2016;66:147–55. doi: 10.1016/j.msec.2016.03.102.

Lima JM De, Sarmento RR, Souza JR De, Brayner FA, Feitosa APS, Padilha R, et al. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. Biomed Res Int. 2015;2015:3–8. doi: 10.1155/2015/247965.