Decoding Therapeutic Pathways of Micronutriomics: Interaction of Vitamin E-Tocotrienol Rich Fraction (TRF) in Insulin-Resistant Zebrafish Larvae Model (Danio rerio)

Main Article Content

Nurliyana Najwa Md Razip
Huzwah Khaza’ai
Suzita Mohd Noor
Anwar Norazit
Norshariza Nordin

Abstract

Introduction: This study investigates the intricate crosstalk between type 2 diabetes mellitus (T2DM) and neurodegenerative disorders, an interaction that remains poorly understood. By exploring micronutrient-based therapeutic strategies, particularly the tocotrienol and tocopherol isomers of vitamin E, we aim to evaluate the potential of a “micronutriomic” approach using tocotrienol-rich fraction (TRF)-vitamin E in modulating these interconnected disease pathways. Method: The oxidative stress status was evaluated by malondialdehyde (MDA) and glutathione (GSH) levels. Next Generation Sequencing (NGS) of transcriptome profiling analysis were performed to study the regulation of gene involved in insulin signaling and neurodegeneration. Insulin resistance-zebrafish larvae were treated with TRF-vitamin E (1 ug/mL) or metformin (50 uM) as a positive control. Results: Both TRF-vitamin E and metformin significantly decreased MDA levels (p<0.05) and increased GSH levels (p<0.05). Differential expression analysis in TRF-vitamin E group indicates 202 downregulated genes and 639 upregulated genes from a total of 841 dysregulated genes. Metformin, revealed a total of 1,500 dsyregulated genes with 1,300 were upregulated and 200 were downregulated. A gene ontology study discovered that the TRF-vitamin E group’s dysregulated genes were considerably enriched in the calcium pathways. Conclusion: The findings suggest that MAPK-CA2+ signaling pathway may be an overlapping mechanism of action between TRF-vitamin E and metformin. Understanding these therapeutic pathwyas in TRF-vitamin E may provide into “micronutriomics” targeted strategies to restore this crosstalk diseases.  

Downloads

Download data is not yet available.

Article Details

How to Cite
Md Razip, N. N., Khaza’ai, H., Mohd Noor, S., Norazit, A., & Nordin, N. (2025). Decoding Therapeutic Pathways of Micronutriomics: Interaction of Vitamin E-Tocotrienol Rich Fraction (TRF) in Insulin-Resistant Zebrafish Larvae Model (Danio rerio). Malaysian Journal of Medicine and Health Sciences, 21(6), 1353.1 – 1353.10. https://doi.org/10.47836/mjmhs.v21.i6.1353
Section
Original Articles

References

Barbagallo M, Dominguez LJ. Type 2 diabetes mellitus and Alzheimer’s disease. World J Diabetes. 2014 Dec 12 [cited 2023 Jun 1];5(6):889. https://doi.org/10.4239/wjd.v5.i6.889

Chiroma AA, Khaza’ai H, Abd. Hamid R, Chang SK, Zakaria ZA, Zainal Z. Analysis of expression of vitamin E-binding proteins in H2O2 induced SK-N-SH neuronal cells supplemented with α-tocopherol and tocotrienol-rich fraction. Cao Y, editor. PLoS One [Internet]. 2020 Nov 24 [cited 2021 Feb 10];15(11):e0241112. https://doi.org/10.1371/journal.pone.0241112

Kiyose C. Absorption, transportation, and distribution of vitamin E homologs. Free Radic Biol Med. 2021 Dec 1;177:226–37. https://doi.org/10.1016/j.freeradbiomed.2021.10.016

Aggarwal BB, Sundaram C, Prasad S, Kannappan R. Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Vol. 80, Biochemical Pharmacology. NIH Public Access; 2010 [cited 2021 Apr 28]. p. 1613–31. https://doi.org/10.1016/j.bcp.2010.07.043

Zainal Z, Rahim AA, Khaza’ai H, Chang SK. Effects of palm oil tocotrienol-rich fraction (TRF) and carotenes in ovalbumin (OVA)-challenged asthmatic brown Norway rats. Int J Mol Sci. 2019 Apr 1;20(7). https://doi.org/10.3390/ijms20071764

Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. Vitamin E as a potential interventional treatment for metabolic syndrome: Evidence from animal and human studies. Front Pharmacol. 2017 Jul 5;8(JUL):444. https://doi.org/10.3389/fphar.2017.00444

Ryan MJ, Dudash HJ, Docherty M, Geronilla KB, Baker BA, Haff GG, et al. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp Gerontol. 2010 Nov [cited 2023 Jun 1];45(11):882. https://doi.org/10.1016/j.exger.2010.08.002

Jain AB, Jain VA. Vitamin E, its beneficial role in diabetes mellitus (DM) and its complications. J Clin Diagnostic Res. 2012 Dec 15 [cited 2021 Jun 14];6(10):1624–8. https://doi.org/10.7860/JCDR/2012/4791.2625

Saboori S, Shab-Bidar S, Speakman JR, Yousefi Rad E, Djafarian K. Effect of vitamin E supplementation on serum C-reactive protein level: a meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2015 Aug 8 [cited 2023 Jun 1];69(8):867–73. https://doi.org/10.1038/ejcn.2014.296

Asbaghi O, Sadeghian M, Nazarian B, Sarreshtedari M, Mozaffari-Khosravi H, Maleki V, et al. The effect of vitamin E supplementation on selected inflammatory biomarkers in adults: a systematic review and meta-analysis of randomized clinical trials. Sci Reports 2020 101. 2020 Oct 14 [cited 2023 Jun 1];10(1):1–17.https://doi.org/10.1038/s41598-020-73741-6

Sarir H, Emdadifard G, Farhangfar H, Taherichadorneshin H. Effect of vitamin E succinate on inflammatory cytokines induced by high-intensity interval training. J Res Med Sci [Internet]. 2015 Dec 1 [cited 2023 Jun 1];20(12):1177. https://doi.org/10.4103/1735-1995.172986

Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Interv. 2018 Jan 1 [cited 2023 Jun 1];4:575. https://doi.org/10.1016/j.trci.2018.06.014

Regner-Nelke L, Nelke C, Schroeter CB, Dziewas R, Warnecke T, Ruck T, et al. Enjoy Carefully: The Multifaceted Role of Vitamin E in Neuro-Nutrition. Int J Mol Sci 2021, Vol 22, Page 10087. 2021 Sep 18 [cited 2023 Jun 1];22(18):10087. https://doi.org/10.3390/ijms221810087

Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. 2008;(2). https://doi.org/10.1002/14651858.CD007176.pub2

Cherubini A, Martin A, Andres-Lacueva C, Di Iorio A, Lamponi M, Mecocci P, et al. Vitamin E levels, cognitive impairment and dementia in older persons: The InCHIANTI study. Neurobiol Aging. 2005;26(7):987–94. https://doi.org/10.1016/j.neurobiolaging.2004.09.002

Farina N, Llewellyn D, Isaac MGEKN, Tabet N. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev. 2017 Jan 27 [cited 2023 Jun 1];2017(1). https://doi.org/10.1002/14651858.CD002854.pub4

Diwan AD, Harke SN, Gopalkrishna SN, Panche AN. Cryobanking of Fish and Shellfish Egg, Embryos and Larvae: An Overview. Front Mar Sci. 2020 May 7;7:498013. https://doi.org/10.1016/j.aquaculture.2016.05.042

Md Razip NN, Mohd Noor S, Norazit A, Nordin N, Sakeh NM, Khaza’ai H. An Association between Insulin Resistance and Neurodegeneration in Zebrafish Larval Model (Danio rerio). Int J Mol Sci [Internet]. 2022 Aug 1 [cited 2023 Jun 1];23(15). https://doi.org/10.3390/ijms23158290

Wyett G, Gibert Y, Ellis M, Castillo HA, Kaslin J, Aston-mourney K. Metformin , beta-cell development , and novel processes following beta-cell ablation in zebrafish. 2017, doi: 10.1007/s12020-017-1502-3.

McDougall M, Choi J, Kim HK, Bobe G, Stevens JF, Cadenas E, et al. Lethal dysregulation of energy metabolism during embryonic vitamin E deficiency. Free Radic Biol Med. 2017 Mar 1;104:324–32. https://doi.org/10.1016/j.freeradbiomed.2017.01.020

Ayala A, Muñoz MF, Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med Cell Longev [Internet]. 2014 [cited 2023 Jun 6];2014. https://doi.org/10.1155/2014/360438

Ito F, Sono Y, Ito T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants. 2019 Mar 1 [cited 2022 Nov 23];8(3).

Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019 101. 2019 Apr 3 [cited 2023 Jun 11];10(1):1–10. https://doi.org/10.1038/s41467-019-09234-6

Pasupuleti VR, Arigela CS, Gan SH, Salam SKN, Krishnan KT, Rahman NA, et al. A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxid Med Cell Longev. 2020;2020. https://doi.org/10.1155/2020/8878172

Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015;6(3):456. https://doi.org/10.4239/wjd.v6.i3.456

Rimbach G, Moehring J, Huebbe P, Lodge JK. Gene-Regulatory Activity of α-Tocopherol. Mol 2010, Vol 15, Pages 1746-1761. 2010 Mar 12 [cited 2023 Jun 5];15(3):1746–61.. https://doi.org/10.3390/molecules15031746

Martemucci G., Costagliola c, Mariano M, L. D’andrea, P. Napolitano, and A. G. D’Alessandro, “Free Radical Properties, Source and Targets, Antioxidant Consumption and Health,” Oxyg. 2022, Vol. 2, Pages 48-78, vol. 2, no. 2, pp. 48–78, Apr. 2022, doi: 10.3390/OXYGEN2020006.

Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Ann Bot. 2003 Jan 2 [cited 2023 May 28];91(2):179–94. https://doi.org/10.1093/aob/mcf118

Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ Med J. 2014 [cited 2023 Apr 15];14(2):e157.

Samson SL, Garber AJ. Metformin and other biguanides: pharmacology and therapeutic usage. Int Textb Diabetes Mellit. 2015 Mar 6 [cited 2023 May 28];641–56. https://doi.org/10.1002/9781118387658.ch43

Dogan Turacli I, Candar T, Yuksel EB, Kalay S, Oguz AK, Demirtas S. Potential effects of metformin in DNA BER system based on oxidative status in type 2 diabetes. Biochimie. 2018 Nov 1;154:62–8. https://doi.org/10.1016/j.biochi.2018.08.002

Goyal R, Singhai M, Faizy AF. Glutathione peroxidase activity in obese and nonobese diabetic patients and role of hyperglycemia in oxidative stress. J Midlife Health [Internet]. 2011 [cited 2023 May 28];2(2):72. https://doi.org/10.4103/0976-7800.92529

Dass AS, Narayana S, Venkatarathnamma PN. Effect of Vitamin E and omega 3 fatty acids in type 2 diabetes mellitus patients. J Adv Pharm Technol Res. 2018;9(1):32-36. doi:10.4103/japtr.JAPTR_309_17. https://doi.org/10.4103/japtr.JAPTR_309_17

Mlecnik B, Galon J, Bindea G. Comprehensive functional analysis of large lists of genes and proteins. J Proteomics. 2018 Jan 16;171:2–10. https://doi.org/10.1016/j.jprot.2017.03.016

Lu G, Wu Z, Shang J, Xie Z, Chen C, zhang C. The effects of metformin on autophagy. 2021 May 1;137:111286. https://doi.org/10.1016/j.biopha.2021.111286

Schultze SM, Hemmings BA, Niessen M, Tschopp O. PI3K/AKT, MAPK and AMPK signalling: Protein kinases in glucose homeostasis. Expert Rev Mol Med. 2012;14(January 2012).doi:10.1017/S1462399411002109

Klec C, Ziomek G, Pichler M, Malli R, Graier WF. Calcium Signaling in ß-cell Physiology and Pathology: A Revisit. Int J Mol Sci [Internet]. 2019 Dec 2 [cited 2023 Jun 20];20(24). Available from: /pmc/articles/PMC6940736/

Soleymani H, Ghorbani M, Allahverdi A, Shojaeilangari S, Naderi-manesh H. Activation of human insulin by vitamin E: A molecular dynamics simulation study. J Mol Graph Model [Internet]. 2019 S Boshtam M, Rafiei M, Golshadi ID, Ani M, Shirani Z, Rostamshirazi M. Long term effects of oral vitamin E supplement in type II diabetic patients. Int J Vitam Nutr Res. 2005 Sep [cited 2023 Jun 1];75(5):341–6. https://doi.org/10.1024/0300-9831.75.5.341ep 1 [cited 2023 Jun 1];91:194–203. doi:10.1016/j.jmgm.2019.06.006

Boshtam M, Rafiei M, Golshadi ID, Ani M, Shirani Z, Rostamshirazi M. Long term effects of oral vitamin E supplement in type II diabetic patients. Int J Vitam Nutr Res. 2005 Sep [cited 2023 Jun 1];75(5):341–6. https://doi.org/10.1024/0300-9831.75.5.341

Nasri H, Rafieian-Kopaei M. Metformin: Current knowledge. J Res Med Sci. 2014 [cited 2023 May 28];19(7):658. Available from: /pmc/articles/PMC4214027/.doi: 10.4103/JRMS.JRMS_62_24]

Wei H ping, Peng Z feng, Shao K mei, Zhang P hao, Chen L, Hu J an, et al. cPKCγ Inhibits Caspase-9-Initiated Neuronal Apoptosis in an Ischemia Reperfusion Model In Vitro Through p38 MAPK-p90RSK-Bad Pathway. Neurochem Res. 2023 Feb 1 [cited 2023 May 31];48(2):362–74. https://doi.org/10.1007/s11064-022-03747-1

Oyama F, Kotliarova S, Harada A, Ito M, Miyazaki H, Ueyama Y, et al. Gem GTPase and Tau: Morphological Changes Induced By GEM GTPase in CHO Cells are Antagonized by TAU. J Biol Chem. 2004 Jun 25;279(26):27272–7. https://doi.org/10.1074/jbc.M401634200

Wang K, Xu R, Schrandt J, Shah P, Gong YZ, Preston C, et al. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain. PLoS Genet. 2015 [cited 2023 Jun 1];11(10). doi: 10.1371/journal.pgen.1007190]

Haenig C, Atias N, Taylor AK, Mazza A, Schaefer MH, Russ J, et al. Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Aggregation in Affected Brains. Cell Rep. 2020 Aug 18 [cited 2023 Jun 1];32(7). https://doi.org/10.1016/j.celrep.2020.108050

Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009 Mar 10 [cited 2023 Jun 1];106(10):3907–12. doi:10.1073/pnas.0807991106

Picone P, Nuzzo D, Caruana L, Messina E, Barera A, Vasto S, et al. Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: Use of insulin to attenuate metformin’s effect. Biochim Biophys Acta - Mol Cell Res. 2015 May 1;1853(5):1046–59. doi:10.1016/j.bbamcr.2015.01.017