Methodological Insights Into Gut Microbiome Profiling: A Comprehensive Review with Emphasis on Bipolar Disorder and Major Depressive Disorder

Main Article Content

Nur Mardhiatuaini Che Zol
Zubaidah Hasain
Nik Noorul Shakira Mohamed Shakrin
Aisha Khodija Kholib Jati
Chun Wie Chong
Aswini Leela Loganathan
Shu Yong Lim
Fong Yoke Ling
Asma Assa’edah Mahmud
Rosnadia Suain Bon
Akramul Zikri Abdul Malek
Jahwarhar Izuan Abdul Rashid

Abstract

Recently, evidence has linked alterations in gut microbiota composition with mental illnesses, particularly bipolar disorder (BD) and major depressive disorder (MDD). Previous human-gut microbiome studies have shown inconsistent results, and these inconsistencies may be attributed to the varying effects of methodological approaches on sample quality and data interpretation. This highlights the need for a comprehensive, standardised approach in gut microbiome research, especially regarding BD and MDD. In this methodological review, we evaluate the technical aspects of gut microbiota studies in BD and MDD conducted between 2018 and 2023, including sampling, DNA extraction, gene preparation, sequencing and bioinformatics analyses. Through evaluating existing methodologies, this review provides researchers with technical recommendations and standardisation guidelines to enhance the quality and consistency of future psychiatric microbiome research.

Downloads

Download data is not yet available.

Article Details

How to Cite
Che Zol, N. M., Hasain, Z., Mohamed Shakrin, N. N. S., Kholib Jati, A. K., Chong, C. W., Loganathan, A. L., Lim, S. Y., Ling, F. Y., Mahmud, A. A., Suain Bon, R., Abdul Malek, A. Z., & Abdul Rashid, J. I. (2025). Methodological Insights Into Gut Microbiome Profiling: A Comprehensive Review with Emphasis on Bipolar Disorder and Major Depressive Disorder. Malaysian Journal of Medicine and Health Sciences, 21(6), 1359.1 – 1359.16. https://doi.org/10.47836/mjmhs.v21.i6.1359
Section
Review Article

References

WHO. Mental disorders: World Health Organization; 2022 [Available from: https://www.who.int/news-room/fact-sheets/detail/mental-disorders.

Vazquez GH, Bahji A, Undurraga J, Tondo L, Baldessarini RJ. Efficacy and Tolerability of Combination Treatments for Major Depression: Antidepressants plus Second-Generation Antipsychotics vs. Esketamine vs. Lithium. J Psychopharmacol. 2021;35(8):890-900. DOI: 10.1177/02698811211013579.

Zheng P, Yang J, Li Y, Wu J, Liang W, Yin B, et al. Gut Microbial Signatures Can Discriminate Unipolar from Bipolar Depression. Adv Sci (Weinh). 2020;7(7):1902862. DOI: 10.1002/advs.201902862.

Lu Q, Lai J, Lu H, Ng C, Huang T, Zhang H, et al. Gut Microbiota in Bipolar Depression and Its Relationship to Brain Function: An Advanced Exploration. Front Psychiatry. 2019;10:784. DOI: 10.3389/fpsyt.2019.00784.

McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O'Hely M, et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry. 2022;27(4):1920-35. DOI: 10.1038/s41380-022-01456-3.

Miller JN, Black DW. Bipolar Disorder and Suicide: a Review. Curr Psychiatry Rep. 2020;22(2):6. DOI: 10.1007/s11920-020-1130-0.

Quide Y, Tozzi L, Corcoran M, Cannon DM, Dauvermann MR. The Impact of Childhood Trauma on Developing Bipolar Disorder: Current Understanding and Ensuring Continued Progress. Neuropsychiatr Dis Treat. 2020;16:3095-115. DOI: 10.2147/NDT.S285540.

Martino M, Magioncalda P. Tracing the psychopathology of bipolar disorder to the functional architecture of intrinsic brain activity and its neurotransmitter modulation: a three-dimensional model. Mol Psychiatry. 2022;27(2):793-802. DOI: 10.1038/s41380-020-00982-2.

Misiak B, Loniewski I, Marlicz W, Frydecka D, Szulc A, Rudzki L, et al. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry. 2020;102:109951. DOI: 10.1016/j.pnpbp.2020.109951.

Kumar A, Pramanik J, Goyal N, Chauhan D, Sivamaruthi BS, Prajapati BG, et al. Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options. Pharmaceuticals (Basel). 2023;16(4). DOI: 10.3390/ph16040565.

Lai WT, Deng WF, Xu SX, Zhao J, Xu D, Liu YH, et al. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychol Med. 2021;51(1):90-101. DOI: 10.1017/S0033291719003027.

Miri S, Yeo J, Abubaker S, Hammami R. Neuromicrobiology, an emerging neurometabolic facet of the gut microbiome? Front Microbiol. 2023;14:1098412. DOI: 10.3389/fmicb.2023.1098412.

Knuesel T, Mohajeri MH. The Role of the Gut Microbiota in the Development and Progression of Major Depressive and Bipolar Disorder. Nutrients. 2021;14(1). DOI: 10.3390/nu14010037.

Zhang P, Zhang D, Lai J, Fu Y, Wu L, Huang H, et al. Characteristics of the gut microbiota in bipolar depressive disorder patients with distinct weight. CNS Neurosci Ther. 2023;29 Suppl 1(Suppl 1):74-83. DOI: 10.1111/cns.14078.

Huang T, Shang Y, Dai C, Zhang Q, Hu S, Xie J. Gut microbiota and its relation to inflammation in patients with bipolar depression: a cross-sectional study. Ann Gen Psychiatry. 2023;22(1):21. DOI: 10.1186/s12991-023-00453-2.

Osman MA, Neoh HM, Ab Mutalib NS, Chin SF, Jamal R. 16S rRNA Gene Sequencing for Deciphering the Colorectal Cancer Gut Microbiome: Current Protocols and Workflows. Front Microbiol. 2018;9:767. DOI: 10.3389/fmicb.2018.00767.

Knudsen JK, Bundgaard-Nielsen C, Hjerrild S, Nielsen RE, Leutscher P, Sorensen S. Gut microbiota variations in patients diagnosed with major depressive disorder-A systematic review. Brain Behav. 2021;11(7):e02177. DOI: 10.1002/brb3.2177.

Hu X, Li Y, Wu J, Zhang H, Huang Y, Tan X, et al. Changes of gut microbiota reflect the severity of major depressive disorder: a cross sectional study. Transl Psychiatry. 2023;13(1):137. DOI: 10.1038/s41398-023-02436-z.

Chen YH, Zhou CH, Yu H, Wu WJ, Wang YW, Liu L, et al. Gut microbial signatures and differences in bipolar disorder and schizophrenia of emerging adulthood. CNS Neurosci Ther. 2023;29 Suppl 1(Suppl 1):5-17. DOI: 10.1111/cns.14044.

Thapa S, Sheu JC, Venkatachalam A, Runge JK, Luna RA, Calarge CA. Gut microbiome in adolescent depression. J Affect Disord. 2021;292:500-7. DOI: 10.1016/j.jad.2021.05.107.

Stevens BR, Pepine CJ, Richards EM, Kim S, Raizada MK. Depressive hypertension: A proposed human endotype of brain/gut microbiome dysbiosis. Am Heart J. 2021;239:27-37. DOI: 10.1016/j.ahj.2021.05.002.

Bharwani A, Szamosi JC, Taylor VH, Lee Y, Bala A, Mansur R, et al. Changes in the gut microbiome associated with infliximab in patients with bipolar disorder. Brain Behav. 2021;11(8):e2259. DOI: 10.1002/brb3.2259.

Rhee SJ, Kim H, Lee Y, Lee HJ, Park CHK, Yang J, et al. Comparison of serum microbiome composition in bipolar and major depressive disorders. J Psychiatr Res. 2020;123:31-8. DOI: 10.1016/j.jpsychires.2020.01.004.

Madan A, Thompson D, Fowler JC, Ajami NJ, Salas R, Frueh BC, et al. The gut microbiota is associated with psychiatric symptom severity and treatment outcome among individuals with serious mental illness. J Affect Disord. 2020;264:98-106. DOI: 10.1016/j.jad.2019.12.020.

Hu S, Li A, Huang T, Lai J, Li J, Sublette ME, et al. Gut Microbiota Changes in Patients with Bipolar Depression. Adv Sci (Weinh). 2019;6(14):1900752. DOI: 10.1002/advs.201900752.

Painold A, Morkl S, Kashofer K, Halwachs B, Dalkner N, Bengesser S, et al. A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord. 2019;21(1):40-9. DOI: 10.1111/bdi.12682.

Coello K, Hansen TH, Sorensen N, Munkholm K, Kessing LV, Pedersen O, et al. Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Brain Behav Immun. 2019;75:112-8. DOI: 10.1016/j.bbi.2018.09.026.

Chen JJ, Zheng P, Liu YY, Zhong XG, Wang HY, Guo YJ, et al. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr Dis Treat. 2018;14:647-55. DOI: 10.2147/NDT.S159322.

Vindegaard N, Speyer H, Nordentoft M, Rasmussen S, Benros ME. Gut microbial changes of patients with psychotic and affective disorders: A systematic review. Schizophr Res. 2021;234:1-10. DOI: 10.1016/j.schres.2019.12.014.

Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B, et al. Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices. Front Cell Infect Microbiol. 2020;10:151. DOI: 10.3389/fcimb.2020.00151.

Budding AE, Grasman ME, Eck A, Bogaards JA, Vandenbroucke-Grauls CM, van Bodegraven AA, et al. Rectal swabs for analysis of the intestinal microbiota. PLoS One. 2014;9(7):e101344. DOI: 10.1371/journal.pone.0101344.

Qian XB, Chen T, Xu YP, Chen L, Sun FX, Lu MP, et al. A guide to human microbiome research: study design, sample collection, and bioinformatics analysis. Chin Med J (Engl). 2020;133(15):1844-55. DOI: 10.1097/CM9.0000000000000871.

Skonieczna-Zydecka K, Marlicz W, Misera A, Koulaouzidis A, Loniewski I. Microbiome-The Missing Link in the Gut-Brain Axis: Focus on Its Role in Gastrointestinal and Mental Health. J Clin Med. 2018;7(12). DOI: 10.3390/jcm7120521.

Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H, et al. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal Chim Acta. 2018;1030:1-24. DOI: 10.1016/j.aca.2018.05.031.

Carrillo KT, Nam SL, Mata APdl, de Bruin OM, Doukhanine E, Harynuk J. Optimization of fecal sample homogenization for untargeted metabolomics. Research Square. 2023:16. DOI: 10.21203/rs.3.rs-2652649/v1.

Wu WK, Chen CC, Panyod S, Chen RA, Wu MS, Sheen LY, et al. Optimization of fecal sample processing for microbiome study - The journey from bathroom to bench. J Formos Med Assoc. 2019;118(2):545-55. DOI: 10.1016/j.jfma.2018.02.005.

Panek M, Cipcic Paljetak H, Baresic A, Peric M, Matijasic M, Lojkic I, et al. Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci Rep. 2018;8(1):5143. DOI: 10.1038/s41598-018-23296-4.

Bharti R, Grimm DG. Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform. 2021;22(1):178-93. DOI: 10.1093/bib/bbz155.

Ezzy AC, Hagstrom AD, George C, Hamlin AS, Pereg L, Murphy AJ, et al. Storage and handling of human faecal samples affect the gut microbiome composition: A feasibility study. J Microbiol Methods. 2019;164:105668. DOI: 10.1016/j.mimet.2019.105668.

Fraher MH, O'Toole PW, Quigley EM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012;9(6):312-22. DOI: 10.1038/nrgastro.2012.44.

Wang Z, Zolnik CP, Qiu Y, Usyk M, Wang T, Strickler HD, et al. Comparison of Fecal Collection Methods for Microbiome and Metabolomics Studies. Front Cell Infect Microbiol. 2018;8:301. DOI: 10.3389/fcimb.2018.00301.

Szostak N, Szymanek A, Havranek J, Tomela K, Rakoczy M, Samelak-Czajka A, et al. The standardization of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling. Sci Rep. 2022;12(1):8470. DOI: 10.1038/s41598-022-12037-3.

Minchin S, Lodge J. Understanding biochemistry: structure and function of nucleic acids. Essays Biochem. 2019;63(4):433-56. DOI: 10.1042/EBC20180038.

Shin JH. Nucleic Acid Extraction and Enrichment. Advanced Techniques in Diagnostic Microbiology2018. p. 273-92.

Gupta N. DNA Extraction and Polymerase Chain Reaction. J Cytol. 2019;36(2):116-7. DOI: 10.4103/JOC.JOC_110_18.

J. D, D. ES, F. L, H. R, C. M, Consortium I. IHMS_SOP 06 V3: Standard operating procedure for fecal samples DNA extraction, Protocol Q.: International Human Microbiome Standards. ; 2020.

Fiedorova K, Radvansky M, Nemcova E, Grombirikova H, Bosak J, Cernochova M, et al. The Impact of DNA Extraction Methods on Stool Bacterial and Fungal Microbiota Community Recovery. Front Microbiol. 2019;10:821. DOI: 10.3389/fmicb.2019.00821.

Jones J, Reinke SN, Ali A, Palmer DJ, Christophersen CT. Fecal sample collection methods and time of day impact microbiome composition and short chain fatty acid concentrations. Sci Rep. 2021;11(1):13964. DOI: 10.1038/s41598-021-93031-z.

Plauzolles A, Toumi E, Bonnet M, Penaranda G, Bidaut G, Chiche L, et al. Human Stool Preservation Impacts Taxonomic Profiles in 16S Metagenomics Studies. Front Cell Infect Microbiol. 2022;12:722886. DOI: 10.3389/fcimb.2022.722886.

Burden DW. Guide to the disruption of biological samples. Random Primers. 2012(12):1-25.

Silva DP, Epstein HE, Vega Thurber RL. Best practices for generating and analyzing 16S rRNA amplicon data to track coral microbiome dynamics. Front Microbiol. 2023;13:1007877. DOI: 10.3389/fmicb.2022.1007877.

Teng F, Darveekaran Nair SS, Zhu P, Li S, Huang S, Li X, et al. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci Rep. 2018;8(1):16321. DOI: 10.1038/s41598-018-34294-x.

Srirungruang S, Mahajindawong B, Nimitpanya P, Bunkasem U, Ayuyoe P, Nuchprayoon S, et al. Comparative Study of DNA Extraction Methods for the PCR Detection of Intestinal Parasites in Human Stool Samples. Diagnostics (Basel). 2022;12(11). DOI: 10.3390/diagnostics12112588.

Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. The Health Benefits of Dietary Fibre. Nutrients. 2020;12(10). DOI: 10.3390/nu12103209.

Rapp D. DNA extraction from bovine faeces: current status and future trends. J Appl Microbiol. 2010;108(5):1485-93. DOI: 10.1111/j.1365-2672.2009.04606.x.

Zhao X, Huang Y, Li X, Yang W, Lv Y, Sun W, et al. Full integration of nucleic acid extraction and detection into a centrifugal microfluidic chip employing chitosan-modified microspheres. Talanta. 2022;250:123711. DOI: 10.1016/j.talanta.2022.123711.

Xiao Z, Yang G, Yan D, Li S, Chen Z, Li W, et al. Effects of diverse materials-based methods on DNA extraction for Clostridium difficle from stool samples. Materials Express. 2019;9(5):509-16. DOI: 10.1166/mex.2019.1520.

Neuberger-Castillo L, Hamot G, Marchese M, Sanchez I, Ammerlaan W, Betsou F. Method Validation for Extraction of DNA from Human Stool Samples for Downstream Microbiome Analysis. Biopreserv Biobank. 2020;18(2):102-16. DOI: 10.1089/bio.2019.0112.

Church DL, Cerutti L, Gurtler A, Griener T, Zelazny A, Emler S. Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev. 2020;33(4). DOI: 10.1128/CMR.00053-19.

Gangadoo S, Rajapaksha Pathirannahalage P, Cheeseman S, Dang YTH, Elbourne A, Cozzolino D, et al. The Multiomics Analyses of Fecal Matrix and Its Significance to Coeliac Disease Gut Profiling. Int J Mol Sci. 2021;22(4). DOI: 10.3390/ijms22041965.

van Dijk EL, Jaszczyszyn Y, Thermes C. Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res. 2014;322(1):12-20. DOI: 10.1016/j.yexcr.2014.01.008.

Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, et al. Library construction for next-generation sequencing: overviews and challenges. Biotechniques. 2014;56(2):61-4, 6, 8, passim. DOI: 10.2144/000114133.

Linnarsson S. Recent advances in DNA sequencing methods - general principles of sample preparation. Exp Cell Res. 2010;316(8):1339-43. DOI: 10.1016/j.yexcr.2010.02.036.

Na HS, Song Y, Yu Y, Chung J. Comparative Analysis of Primers Used for 16S rRNA Gene Sequencing in Oral Microbiome Studies. Methods Protoc. 2023;6(4). DOI: 10.3390/mps6040071.

Sambo F, Finotello F, Lavezzo E, Baruzzo G, Masi G, Peta E, et al. Optimizing PCR primers targeting the bacterial 16S ribosomal RNA gene. BMC Bioinformatics. 2018;19(1):343. DOI: 10.1186/s12859-018-2360-6.

Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One. 2015;10(2):e0117617. DOI: 10.1371/journal.pone.0117617.

Thomas V, Clark J, Dore J. Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiol. 2015;10(9):1485-504. DOI: 10.2217/fmb.15.87.

Hassler HB, Probert B, Moore C, Lawson E, Jackson RW, Russell BT, et al. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome. 2022;10(1):104. DOI: 10.1186/s40168-022-01295-y.

Kong HH. Details Matter: Designing Skin Microbiome Studies. J Invest Dermatol. 2016;136(5):900-2. DOI: 10.1016/j.jid.2016.03.004.

Bukin YS, Galachyants YP, Morozov IV, Bukin SV, Zakharenko AS, Zemskaya TI. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data. 2019;6:190007. DOI: 10.1038/sdata.2019.7.

Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, et al. Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere. 2021;6(1). DOI: 10.1128/mSphere.01202-20.

Wang F, Men X, Zhang G, Liang K, Xin Y, Wang J, et al. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express. 2018;8(1):182. DOI: 10.1186/s13568-018-0713-1.

Fadeev E, Cardozo-Mino MG, Rapp JZ, Bienhold C, Salter I, Salman-Carvalho V, et al. Comparison of Two 16S rRNA Primers (V3-V4 and V4-V5) for Studies of Arctic Microbial Communities. Front Microbiol. 2021;12:637526. DOI: 10.3389/fmicb.2021.637526.

Onywera H, Meiring TL. Comparative analyses of Ion Torrent V4 and Illumina V3-V4 16S rRNA gene metabarcoding methods for characterization of cervical microbiota: taxonomic and functional profiling. Scientific African. 2020;7. DOI: 10.1016/j.sciaf.2020.e00278.

Kazantseva J, Malv E, Kaleda A, Kallastu A, Meikas A. Optimisation of sample storage and DNA extraction for human gut microbiota studies. BMC Microbiol. 2021;21(1):158. DOI: 10.1186/s12866-021-02233-y.

de la Cuesta-Zuluaga J, Escobar JS. Considerations For Optimizing Microbiome Analysis Using a Marker Gene. Front Nutr. 2016;3:26. DOI: 10.3389/fnut.2016.00026.

Sze MA, Schloss PD, McMahon K. The Impact of DNA Polymerase and Number of Rounds of Amplification in PCR on 16S rRNA Gene Sequence Data. mSphere. 2019;4(3). DOI: 10.1128/mSphere.00163-19.

Kapp JD, Green RE, Shapiro B. A Fast and Efficient Single-stranded Genomic Library Preparation Method Optimized for Ancient DNA. J Hered. 2021;112(3):241-9. DOI: 10.1093/jhered/esab012.

Malla MA, Dubey A, Kumar A, Yadav S, Hashem A, Abd Allah EF. Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment. Front Immunol. 2018;9:2868. DOI: 10.3389/fimmu.2018.02868.

Rezasoltani S, Ahmadi Bashirzadeh D, Nazemalhosseini Mojarad E, Asadzadeh Aghdaei H, Norouzinia M, Shahrokh S. Signature of Gut Microbiome by Conventional and Advanced Analysis Techniques: Advantages and Disadvantages. Middle East J Dig Dis. 2020;12(1):5-11. DOI: 10.15171/mejdd.2020.157.

Galloway-Pena J, Hanson B. Tools for Analysis of the Microbiome. Dig Dis Sci. 2020;65(3):674-85. DOI: 10.1007/s10620-020-06091-y.

Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell. 2021;12(5):315-30. DOI: 10.1007/s13238-020-00724-8.

Laudadio I, Fulci V, Palone F, Stronati L, Cucchiara S, Carissimi C. Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome. OMICS. 2018;22(4):248-54. DOI: 10.1089/omi.2018.0013.

Usyk M, Peters BA, Karthikeyan S, McDonald D, Sollecito CC, Vazquez-Baeza Y, et al. Comprehensive evaluation of shotgun metagenomics, amplicon sequencing, and harmonization of these platforms for epidemiological studies. Cell Rep Methods. 2023;3(1):100391. DOI: 10.1016/j.crmeth.2022.100391.

Ioannou M, Borkent J, Andreu-Sanchez S, Wu J, Fu J, Sommer IEC, et al. Reproducible gut microbial signatures in bipolar and schizophrenia spectrum disorders: A metagenome-wide study. Brain Behav Immun. 2024;121:165-75. DOI: 10.1016/j.bbi.2024.07.009.

Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G. Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis. Evol Bioinform Online. 2016;12(Suppl 1):5-16. DOI: 10.4137/EBO.S36436.

Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D. Challenges and perspectives of metaproteomic data analysis. Journal of Biotechnology. 2017;261:24-36. DOI: 10.1016/j.jbiotec.2017.06.1201.

Akacin I, Ersoy S, Doluca O, Gungormusler M. Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiol Res. 2022;264:127154. DOI: 10.1016/j.micres.2022.127154.

Bruijns B, Tiggelaar R, Gardeniers H. Massively parallel sequencing techniques for forensics: A review. Electrophoresis. 2018;39(21):2642-54. DOI: 10.1002/elps.201800082.

Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel). 2023;12(7). DOI: 10.3390/biology12070997.

Slatko BE, Gardner AF, Ausubel FM. Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol. 2018;122(1):e59. DOI: 10.1002/cpmb.59.

Pollock J, Glendinning L, Wisedchanwet T, Watson M. The Madness of Microbiome: Attempting To Find Consensus "Best Practice" for 16S Microbiome Studies. Appl Environ Microbiol. 2018;84(7). DOI: 10.1128/AEM.02627-17.

Segerman B. The Most Frequently Used Sequencing Technologies and Assembly Methods in Different Time Segments of the Bacterial Surveillance and RefSeq Genome Databases. Frontiers in Cellular and Infection Microbiology. 2020;10. DOI: 10.3389/fcimb.2020.527102.

Stoler N, Nekrutenko A. Sequencing error profiles of Illumina sequencing instruments. NAR Genomics and Bioinformatics. 2021;3(1). DOI: 10.1093/nargab/lqab019.

Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics. 2012;13:1-13.

Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clinical Microbiology and Infection. 2018;24(4):335-41. DOI: 10.1016/j.cmi.2017.10.013.

Pandit K, Petrescu J, Cuevas M, Stephenson W, Smibert P, Phatnani H, et al. An open source toolkit for repurposing Illumina sequencing systems as versatile fluidics and imaging platforms. Scientific Reports. 2022;12(1). DOI: 10.1038/s41598-022-08740-w.

Xia Y, Sun J, Chen D-G. Power and Sample Size Calculations for Microbiome Data. Statistical Analysis of Microbiome Data with R. Singapore: Springer Singapore; 2018. p. 129-66.

Liss MA, White JR, Goros M, Gelfond J, Leach R, Johnson-Pais T, et al. Metabolic Biosynthesis Pathways Identified from Fecal Microbiome Associated with Prostate Cancer. Eur Urol. 2018;74(5):575-82. DOI: 10.1016/j.eururo.2018.06.033.

Nguyen TT, Kosciolek T, Daly RE, Vazquez-Baeza Y, Swafford A, Knight R, et al. Gut microbiome in Schizophrenia: Altered functional pathways related to immune modulation and atherosclerotic risk. Brain Behav Immun. 2021;91:245-56. DOI: 10.1016/j.bbi.2020.10.003.