Directed Differentiation of Natural Killer Cells from Human Induced Pluripotent Stem Cells: From Developmental Cues to In vitro Production

Main Article Content

Chen Chung Chun
Fatin Fazrina Roslan
Khong Lek Then
Kong Yong Then
Soon-Keng Cheong
Effa Syazuli Zulkafli
Jun Tye Gee
Jun Jie Tan

Abstract

Natural killer (NK) cells are currently explored for cell therapy due to their innate tumour-killing properties. Their potential for adoptive immunotherapy has garnered significant attention, especially as an allogeneic cell source for cancer treatment due to their graft-versus-leukaemia effect and the safety profile. However, challenges involving ex vivo expansion of primary NK cells have hindered, to a certain extent, their clinical application. Hence, alternative cell source which can preferably be provided off-the-shelf are needed. Human-induced pluripotent stem cells have emerged as the promising cell source for producing homogenous NK cells under highly defined conditions for clinical treatment. In view of this, the understanding of the differentiation signalling cues underlying the development of NK cells is important to ensure highly efficient production of NK cells can be achieved in vitro. In this review, we briefly describe the recent chimeric-antigen receptor (CAR) technology used in engineering tumour-specific T cells and their current limitations, as well as summarizing the role of NK cells as an alternative cell source in adoptive immune cell therapy, the differentiation signalling from the view of NK cell development in human, comparing the current differentiation protocols using human induced pluripotent stem cells.

Downloads

Download data is not yet available.

Article Details

How to Cite
Chun, C. C., Roslan, F. F., Khong Lek Then, Kong Yong Then, Cheong, S.-K., Zulkafli, E. S., Gee , J. T., & Tan, J. J. (2025). Directed Differentiation of Natural Killer Cells from Human Induced Pluripotent Stem Cells: From Developmental Cues to In vitro Production. Malaysian Journal of Medicine and Health Sciences, 21(6), 1360.1 – 1360.15. https://doi.org/10.47836/mjmhs.v21.i6.1360
Section
Review Article

References

Porter D, Frey N, Wood PA, Weng Y, Grupp SA. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol 2018;11:35. doi: 10.1186/s13045-018-0571-y

Tang TCY, Xu N, Nordon R, Haber M, Micklethwaite K, Dolnikov A. Donor T cells for CAR T cell therapy. Biomark Res 2022;10:14. doi: 10.1186/s40364-022-00359-3

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 2021;11:69. doi: 10.1038/s41408-021-00459-7

Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol 2017;8:1124. doi: 10.3389/fimmu.2017.01124

Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D stress ligands and its relevance in cancer progression. Cancers (Basel) 2022;14. doi: 10.3390/cancers14092339

Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, et al. First-in-man clinical trial of CAR NK-92 cells: Safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. American Journal of Cancer Research 2018;8:1083. doi:

Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 2020;382:545-53. doi: 10.1056/NEJMoa1910607

Lin H, Yang X, Ye S, Huang L, Mu W. Antigen escape in CAR-T cell therapy: Mechanisms and overcoming strategies. Biomed Pharmacother 2024;178:117252. doi: 10.1016/j.biopha.2024.117252

Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, et al. CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances. Molecular Cancer 2023;22:20. doi: 10.1186/s12943-023-01723-z

Zhu H, Blum RH, Bernareggi D, Ask EH, Wu Z, Hoel HJ, et al. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell 2020;27:224-37 e6. doi: 10.1016/j.stem.2020.05.008

Peled T, Brachya G, Persi N, Lador C, Olesinski E, Landau E, et al. Enhanced in vivo persistence and proliferation of NK cells expanded in culture with the small molecule nicotinamide: Development of a clinical-applicable method for NK expansion. Blood 2017;130:657. doi: https://doi.org/10.1182/blood.V130.Suppl_1.657.657

Biasco L, Izotova N, Rivat C, Ghorashian S, Richardson R, Guvenel A, et al. Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients. Nat Cancer 2021;2:629-42. doi: 10.1038/s43018-021-00207-7

Pan K, Farrukh H, Chittepu V, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res 2022;41:119. doi: 10.1186/s13046-022-02327-z

Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, et al. Advances in NK cell production. Cell Mol Immunol 2022;19:460-81. doi: 10.1038/s41423-021-00808-3

Solana R, Campos C, Pera A, Tarazona R. Shaping of NK cell subsets by aging. Curr Opin Immunol 2014;29:56-61. doi: 10.1016/j.coi.2014.04.002

Gounder SS, Abdullah BJJ, Radzuanb N, Zain F, Sait NBM, Chua C, et al. Effect of aging on NK cell population and their proliferation at ex vivo culture condition. Analytical Cellular Pathology 2018;2018:7871814. doi: 10.1155/2018/7871814

Damele L, Spaggiari GM, Parodi M, Mingari MC, Vitale M, Vitale C. Cord blood-derived natural killer cell exploitation in immunotherapy protocols: More than a promise? Cancers (Basel) 2022;14. doi: 10.3390/cancers14184439

Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020;19:200-18. doi: 10.1038/s41573-019-0052-1

Goldenson BH, Zhu H, Wang YM, Heragu N, Bernareggi D, Ruiz-Cisneros A, et al. Umbilical cord blood and iPSC-derived natural killer cells demonstrate key differences in cytotoxic activity and KIR profiles. Front Immunol 2020;11:561553. doi: 10.3389/fimmu.2020.561553

Klingemann H, Boissel L, Toneguzzo F. Natural killer cells for immunotherapy–advantages of the NK-92 cell line over blood NK cells. Front Immunol 2016;7:91. doi: 10.3389/fimmu.2016.00091

Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 2013;15:1563-70. doi: 10.1016/j.jcyt.2013.06.017

Navarrete-Galvan L, Guglielmo M, Cruz Amaya J, Smith-Gagen J, Lombardi VC, Merica R, et al. Optimizing NK-92 serial killers: Gamma irradiation, CD95/Fas-ligation, and NK or LAK attack limit cytotoxic efficacy. Journal of Translational Medicine 2022;20:151. doi: 10.1186/s12967-022-03350-6

Walcher L, Kistenmacher A-K, Sommer C, Böhlen S, Ziemann C, Dehmel S, et al. Low energy electron irradiation is a potent alternative to gamma irradiation for the inactivation of (CAR-)NK-92 cells in ATMP manufacturing. Front Immunol 2021;12. doi: 10.3389/fimmu.2021.684052

Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006;126:663-76. doi: 10.1016/j.cell.2006.07.024

Karagiannis P, Kim S-I. iPSC-Derived Natural Killer Cells for Cancer Immunotherapy. Molecules and Cells 2021;44:541-8. doi: https://doi.org/10.14348/molcells.2021.0078

Yamanaka S. Pluripotent stem cell-based cell therapy—promise and challenges. Cell Stem Cell 2020;27:523-31. doi: 10.1016/j.stem.2020.09.014

Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, et al. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2019;686:146-59. doi: 10.1016/j.gene.2018.11.069

Bachanova V, Ghobadi A, Patel K, Park JH, Flinn IW, Shah P, et al. Safety and efficacy of FT596, a first-in-class, multi-antigen targeted, off-the-shelf, ipsc-derived CD19 CAR NK cell therapy in relapsed/refractory B-cell lymphoma. Blood 2021;138:823. doi: https://doi.org/10.1182/blood-2021-151185

Ramachandran I, Rothman S, Clausi M, McFadden K, Salantes B, Jih G, et al. Multiple doses of CNTY-101, an iPSC-derived allogeneic CD19 targeting CAR-NK product, are safe and result in tumor microenvironment changes associated with response: A case study. Blood 2023;142:1654. doi: https://doi.org/10.1182/blood-2023-182313

Harano K, Kaneko S, Nakatsura T, Yuda J, Fuse N, Sato A, et al. Abstract 5185: First in human trial of off-the shelf iPS derived anti-GPC3 NK cells for recurrent ovarian clear cell carcinoma with peritoneal dissemination. Cancer Research 2022;82:5185-. doi: 10.1158/1538-7445.Am2022-5185

Baghbaderani BA, Tian X, Neo BH, Burkall A, Dimezzo T, Sierra G, et al. cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cell Reports 2015;5:647-59. doi: 10.1016/j.stemcr.2015.08.015

Poetsch MS, Strano A, Guan K. Human induced pluripotent stem cells: From cell origin, genomic stability, and epigenetic memory to translational medicine. Stem Cells 2022;40:546-55. doi: 10.1093/stmcls/sxac020

Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010;467:285-90. doi: 10.1038/nature09342

Arnheim N, Cortopassi G. Deleterious mitochondrial DNA mutations accumulate in aging human tissues. Mutat Res 1992;275:157-67. doi: 10.1016/0921-8734(92)90020-p

Ono T, Uehara Y, Saito Y, Ikehata H. Mutation theory of aging, assessed in transgenic mice and knockout mice. Mech Ageing Dev 2002;123:1543-52. doi: 10.1016/s0047-6374(02)00090-8

Ema H, Morita Y, Suda T. Heterogeneity and hierarchy of hematopoietic stem cells. Exp Hematol 2014;42:74-82 e2. doi: 10.1016/j.exphem.2013.11.004

Zhang Y, Gao S, Xia J, Liu F. Hematopoietic hierarchy - An updated roadmap. Trends Cell Biol 2018;28:976-86. doi: 10.1016/j.tcb.2018.06.001

Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006;25:977-88. doi: 10.1016/j.immuni.2006.10.016

Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012;481:457-62. doi: 10.1038/nature10783

Rybtsov S, Batsivari A, Bilotkach K, Paruzina D, Senserrich J, Nerushev O, et al. Tracing the origin of the HSC hierarchy reveals an SCF-dependent, IL-3-independent CD43(-) embryonic precursor. Stem Cell Reports 2014;3:489-501. doi: 10.1016/j.stemcr.2014.07.009

Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol 2017;17:573-90. doi: 10.1038/nri.2017.53

Scoville SD, Freud AG, Caligiuri MA. Modeling human natural killer cell development in the era of innate lymphoid cells. Front Immunol 2017;8:360. doi: 10.3389/fimmu.2017.00360

Yu J, Freud AG, Caligiuri MA. Location and cellular stages of natural killer cell development. Trends Immunol 2013;34:573-82. doi: 10.1016/j.it.2013.07.005

Freud AG, Caligiuri MA. Human natural killer cell development. Immunol Rev 2006;214:56-72. doi: 10.1111/j.1600-065X.2006.00451.x

Freud AG, Yokohama A, Becknell B, Lee MT, Mao HC, Ferketich AK, et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 2006;203:1033-43. doi: 10.1084/jem.20052507

Schippel N, Sharma S. Dynamics of human hematopoietic stem and progenitor cell differentiation to the erythroid lineage. Exp Hematol 2023;123:1-17. doi: 10.1016/j.exphem.2023.05.001

Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 2002;3:1150-5. doi: 10.1038/ni857

Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001;22:633-40. doi: 10.1016/S1471-4906(01)02060-9

Lanier L, Le AM, Civin C, Loken M, Phillips J. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. Journal of Immunology 1986;136:4480-6. doi: 10.4049/jimmunol.136.12.4480

Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: Development, maturation, and clinical utilization. Front Immunol 2018;9:1869. doi: 10.3389/fimmu.2018.01869

Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, et al. CD56brightCD16− killer Ig-like receptor− NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 2007;178:4947-55. doi: 10.4049/jimmunol.178.8.4947

Bjorkstrom NK, Ljunggren HG, Michaelsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol 2016;16:310-20. doi: 10.1038/nri.2016.34

Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 2010;116:3865-74. doi: 10.1182/blood-2010-04-282301

Beziat V, Descours B, Parizot C, Debre P, Vieillard V. NK cell terminal differentiation: Correlated stepwise decrease of NKG2A and acquisition of KIRs. PLoS One 2010;5:e11966. doi: 10.1371/journal.pone.0011966

Paust S, Blish CA, Reeves RK. Redefining memory: Building the case for adaptive NK cells. J Virol 2017;91. doi: 10.1128/JVI.00169-17

Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol 2017;8:930. doi: 10.3389/fimmu.2017.00930

Grzywacz B, Kataria N, Kataria N, Blazar BR, Miller JS, Verneris MR. Natural killer-cell differentiation by myeloid progenitors. Blood 2011;117:3548-58. doi: 10.1182/blood-2010-04-281394

Meazza R, Azzarone B, Orengo AM, Ferrini S. Role of common-gamma chain cytokines in NK cell development and function: Perspectives for immunotherapy. J Biomed Biotechnol 2011;2011:861920. doi: 10.1155/2011/861920

Ring AM, Lin JX, Feng D, Mitra S, Rickert M, Bowman GR, et al. Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nat Immunol 2012;13:1187-95. doi: 10.1038/ni.2449

Waldmann TA. The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nat Rev Immunol 2006;6:595-601. doi: 10.1038/nri1901

Kundig TM, Schorle H, Bachmann MF, Hengartner H, Zinkernagel RM, Horak I. Immune responses in interleukin-2-deficient mice. Science 1993;262:1059-61. doi: 10.1126/science.8235625

Suzuki H, Duncan GS, Takimoto H, Mak TW. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J Exp Med 1997;185:499-505. doi: 10.1084/jem.185.3.499

Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998;9:669-76. doi: 10.1016/s1074-7613(00)80664-0

Carson WE, Fehniger TA, Haldar S, Eckhert K, Lindemann MJ, Lai CF, et al. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 1997;99:937-43. doi: 10.1172/JCI119258

Cooper MA, Bush JE, Fehniger TA, VanDeusen JB, Waite RE, Liu Y, et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 2002;100:3633-8. doi: 10.1182/blood-2001-12-0293

Vosshenrich CA, Garcia-Ojeda ME, Samson-Villeger SI, Pasqualetto V, Enault L, Richard-Le Goff O, et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 2006;7:1217-24. doi: 10.1038/ni1395

Michaud A, Dardari R, Charrier E, Cordeiro P, Herblot S, Duval M. IL-7 enhances survival of human CD56bright NK cells. J Immunother 2010;33:382-90. doi: 10.1097/CJI.0b013e3181cd872d

Cella M, Otero K, Colonna M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc Natl Acad Sci U S A 2010;107:10961-6. doi: 10.1073/pnas.1005641107

Roda JM, Joshi T, Butchar JP, McAlees JW, Lehman A, Tridandapani S, et al. The activation of natural killer cell effector functions by cetuximab-coated, epidermal growth factor receptor positive tumor cells is enhanced by cytokines. Clin Cancer Res 2007;13:6419-28. doi: 10.1158/1078-0432.CCR-07-0865

Skak K, Frederiksen KS, Lundsgaard D. Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology 2008;123:575-83. doi: 10.1111/j.1365-2567.2007.02730.x

Brady J, Hayakawa Y, Smyth MJ, Nutt SL. IL-21 induces the functional maturation of murine NK cells. J Immunol 2004;172:2048-58. doi: 10.4049/jimmunol.172.4.2048

Sivori S, Cantoni C, Parolini S, Marcenaro E, Conte R, Moretta L, et al. IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur J Immunol 2003;33:3439-47. doi: 10.1002/eji.200324533

Lyman SD, Jacobsen SEW. c-kit ligand and Flt3 ligand: Stem/progenitor cell factors with overlapping yet distinct activities. Blood 1998;91:1101-34. doi: 10.1182/blood.V91.4.1101

Wodnar-Filipowicz A. Flt3 ligand: role in control of hematopoietic and immune functions of the bone marrow. News Physiol Sci 2003;18:247-51. doi: 10.1152/nips.01452.2003

Shibuya A, Nagayoshi K, Nakamura K, Nakauchi H. Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells. Blood 1995;85:3538-46. doi: 10.1182/blood.V85.12.3538.bloodjournal85123538

Luevano M, Madrigal A, Saudemont A. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy. Cell Mol Immunol 2012;9:310-20. doi: 10.1038/cmi.2012.17

Zeng J, Tang SY, Toh LL, Wang S. Generation of “Off-the-Shelf” Natural Killer Cells from Peripheral Blood Cell-Derived Induced Pluripotent Stem Cells. Stem Cell Reports 2017;9:1796-812. doi: 10.1016/j.stemcr.2017.10.020

Woll PS, Martin CH, Miller JS, Kaufman DS. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol 2005;175:5095-103. doi: 10.4049/jimmunol.175.8.5095

Zeng J, Tang SY, Toh LL, Wang S. Generation of "off-the-shelf" natural killer cells from peripheral blood cell-derived induced pluripotent stem cells. Stem Cell Reports 2017;9:1796-812. doi: 10.1016/j.stemcr.2017.10.020

Niwa A, Saito MK. Induction of human natural killer cells under defined conditions by seamless transition from maintenance culture of pluripotent stem cells. Methods Mol Biol 2022;2463:47-52. doi: 10.1007/978-1-0716-2160-8_4

Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Molecular Medicine 2000;6:88-95. doi: 10.1007/BF03401776

Trounson A. The production and directed differentiation of human embryonic stem cells. Endocrine Reviews 2006;27:208-19. doi: 10.1210/er.2005-0016

Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 2003;102:906-15. doi: 10.1182/blood-2003-03-0832

Tian X, Morris JK, Linehan JL, Kaufman DS. Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells. Exp Hematol 2004;32:1000-9. doi: 10.1016/j.exphem.2004.06.013

Kurosawa H. Methods for inducing embryoid body formation: In vitro differentiation system of embryonic stem cells. J Biosci Bioeng 2007;103:389-98. doi: 10.1263/jbb.103.389

Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO Journal 2007;26:4744-55. doi: 10.1038/sj.emboj.7601896

Van Winkle AP, Gates ID, Kallos MS. Mass transfer limitations in embryoid bodies during human embryonic stem cell differentiation. Cells Tissues Organs 2012;196:34-47. doi: 10.1159/000330691

Knorr DA, Ni Z, Hermanson D, Hexum MK, Bendzick L, Cooper LJ, et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Sci Transl Med 2013;2:274-83. doi: 10.5966/sctm.2012-0084

Bock AM, Knorr D, Kaufman DS. Development, expansion, and in vivo monitoring of human NK cells from human embryonic stem cells (hESCs) and and induced pluripotent stem cells (iPSCs). J Vis Exp 2013:e50337. doi: 10.3791/50337

Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 2005;106:1601-3. doi: 10.1182/blood-2005-03-0987

Ng ES, Davis R, Stanley EG, Elefanty AG. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc 2008;3:768-76. doi: 10.1038/nprot.2008.42

Zhu H, Kaufman DS. An improved method to produce clinical-scale natural killer cells from human pluripotent stem cells. Methods Mol Biol 2019;2048:107-19. doi: 10.1007/978-1-4939-9728-2_12

Klaihmon P, Kang X, Issaragrisil S, Luanpitpong S. Generation and functional characterization of anti-CD19 chimeric antigen receptor-natural killer cells from human induced pluripotent stem cells. Int J Mol Sci 2023;24. doi: 10.3390/ijms241310508

Choy Buentello D, Koch LS, Trujillo-de Santiago G, Alvarez MM, Broersen K. Use of standard U-bottom and V-bottom well plates to generate neuroepithelial embryoid bodies. PLoS One 2022;17:e0262062. doi: 10.1371/journal.pone.0262062

Ueda T, Kumagai A, Iriguchi S, Yasui Y, Miyasaka T, Nakagoshi K, et al. Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci 2020;111:1478-90. doi: 10.1111/cas.14374

Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 2012;7:e30264. doi: 10.1371/journal.pone.0030264

Lu SJ, Feng Q. CAR-NK cells from engineered pluripotent stem cells: Off-the-shelf therapeutics for all patients. Stem Cells Transl Med 2021;10 Suppl 2:S10-S7. doi: 10.1002/sctm.21-0135

Matsubara H, Niwa A, Nakahata T, Saito MK. Induction of human pluripotent stem cell-derived natural killer cells for immunotherapy under chemically defined conditions. Biochem Biophys Res Commun 2019;515:1-8. doi: 10.1016/j.bbrc.2019.03.085

Hermanson DL, Ni Z, Kaufman DS. Human pluripotent stem cells as a renewable source of natural killer cells. In: Cheng T, editor. Hematopoietic Differentiation of Human Pluripotent Stem Cells. Dordrecht: Springer Netherlands; 2015. p. 69-79.

Lupo KB, Moon JI, Chambers AM, Matosevic S. Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. Cytotherapy 2021;23:939-52. doi: 10.1016/j.jcyt.2021.05.001

Meng F, Zhang S, Xie J, Zhou Y, Wu Q, Lu B, et al. Leveraging CD16 fusion receptors to remodel the immune response for enhancing anti-tumor immunotherapy in iPSC-derived NK cells. J Hematol Oncol 2023;16:62. doi: 10.1186/s13045-023-01455-z

Ching PY, Wang C, Hang S, Liu P, Sugimura R. Generation of natural killer cells from human expanded potential stem cells. J Vis Exp 2023. doi: 10.3791/64608

Feng Q, Zhang M-Y, Lu S-J, inventorsMethods and systems for manufacturing hematopoietic lineage cells patent WO/2020/086889. 2021 2020.

Antonchuk J. Formation of embryoid bodies from human pluripotent stem cells using AggreWell™ plates. In: Helgason CD, Miller CL, editors. Basic Cell Culture Protocols. Totowa, NJ: Humana Press; 2013. p. 523-33.

Pettinato G, Wen X, Zhang N. Engineering strategies for the formation of embryoid bodies from human pluripotent stem cells. Stem Cells Dev 2015;24:1595-609. doi: 10.1089/scd.2014.0427

Granzin M, Soltenborn S, Müller S, Kollet J, Berg M, Cerwenka A, et al. Fully automated expansion and activation of clinical-grade natural killer cells for adoptive immunotherapy. doi: