Reliability of Halo & Glare Simulator in Characterise Types of Halo and Glare

Main Article Content

Nor Sabrina Sulaiman
Noor Shazana Md Rejab
Khairidzan Mohd Kamal
Mohd Radzi Hilmi

Abstract

Introduction: To evaluate the reliability of glaremeter in quantifying glare and halo using simulation. Material and Methods: One hundred and twenty young adults were recruited in this prospective study. A comprehensive optometric examination was done prior to photic phenomena test (PPT). Room luminance were set in a dim room with a standardised luminance of 85 cd/m2. Participant were asked to adjust the intensity and size of halo, glare and starburst using the simulator built-in scale. The PPT findings were classified into four groups; none, mild, moderate and severe. For inter-rater reliabilities, two examiners evaluate the same participant within a week. Bland–Altman plots and intraclass correlation coefficients (ICCs) were used to describe reliability of measurement. Results: For the first visit, mean and standard deviation (mean ± SD) of halo size and intensity were 27.20 ± 6.54 and 28.13 ± 22.93 respectively. For glare size and intensity, mean ± SD were 23.80 ± 13.80 and 38.42 ± 20.24 respectively. For the second visit, the mean ± SD halo size and intensity were 24.97 ± 21.79 and 26.75 ± 22.04 respectively. For glare size and intensity, mean ± SD were 22.47 ± 15.46 and 38.07 ± 18.53 respectively. Paired T-test findings revealed no significant difference between all parameters, between both visits (All P > 0.05). ICCs revealed good correlations for all parameters (all r-value > 0.75). Bland Altman plot showed agreement of measurements for all parameters were within the 95% confidence interval. Conclusion: Halo & Glare simulator is reliable to quantify photic phenomena.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sulaiman, N. S., Md Rejab, N. S., Mohd Kamal, K., & Mohd Radzi Hilmi. (2025). Reliability of Halo & Glare Simulator in Characterise Types of Halo and Glare. Malaysian Journal of Medicine and Health Sciences, 21(6), 1393.1 –1393.7. https://doi.org/10.47836/mjmhs.v21.i6.1393
Section
Original Articles

References

Ukai Y, Okemoto H, Seki Y, Nakatsugawa Y, Kawasaki A, Shibata T, Mito T, Kubo E, Sasaki H. Quantitative assessment of photic phenomena in the presbyopia-correcting intraocular lens. PLoS One. 2021 Dec 1;16(12):e0260406. doi: 10.1371/journal.pone.0260406.

de Silva SR, Evans JR, Kirthi V, Ziaei M, Leyland M. Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst Rev. 2016;12:CD003169. doi: 10.1002/14651858.CD003169.pub4.

Ribeiro FJ, Ferreira TB. Comparison of visual and refractive outcomes of 2 trifocal intraocular lenses. J Cataract Refract Surg. 2020;46(5):694–9. doi: 10.1097/j.jcrs.0000000000000118 .

Son HS, Khoramnia R, Yildirim TM, Baur I, Labuz G, Auffarth GU. Functional outcomes and reading performance after combined implantation of a small-aperture lens and a segmental refractive bifocal lens. J Refract Surg. 2019;35(9):551–8. doi: 10.3928/1081597X-20190806-02.

Buckhurst PJ, Naroo SA, Davies LN, Shah S, Buckhurst H, Kingsnorth A, Drew T, Wolffsohn JS. Tablet App halometer for the assessment of dysphotopsia. J Cataract Refract Surg. 2015;41(11):2424–9. doi: 10.1016/j.jcrs.2015.05.041.

Darian-Smith E, Versace P. Visual performance and positional stability of a capsulorhexis-fixated extended depth-of-focus intraocular lens. J Cataract Refract Surg. 2020;46(2):179–87. doi: 10.1097/j.jcrs.0000000000000044.

Bissen-Miyajima H, Ota Y, Hayashi K, Igarashi C, Sasaki N. Results of a clinical evaluation of a trifocal intraocular lens in Japan. Jpn J Ophthalmol. 2020;64(2):140–9. doi: 10.1007/s10384-019-00712-4.

Tan J, Qin Y, Wang C, Yuan S, Ye J. Visual quality and performance following bilateral implantation of TECNIS Symfony intraocular lenses with or without micro-monovision. Clin Ophthalmol. 2019;13:1071–7. doi: 10.2147/OPTH.S202380.

Cochener B. Influence of the level of monovision on visual outcome with an extended range of vision intraocular lens. Clin Ophthalmol. 2018;12:2305–12. doi: 10.2147/OPTH.S184712.

Jais FN, Che Azemin MZ, Hilmi MR, Mohd Tamrin MI, Kamal KM. Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique. Scientific World Journal. 2021 Nov 15;2021:6211006. doi: 10.1155/2021/6211006.

Md Mustafa MMS, Abdul Mutalib H, Ab. Halim N, Hilmi MR. Accuracy of contact lens method by spherical and aspheric rigid gas permeable lenses on corneal power determination in normal eyes. Sains Malaysiana, 2020;49(6): 1431-1437.

Mohd Radzi H, Mohd Zulfaezal CA, Khairidzan MK, Mohd Izzuddin MT, Norfazrina AG, Tengku Mohd TS. Prediction of changes in visual acuity and contrast sensitivity function by tissue redness after pterygium surgery. Curr Eye Res. 2017;42:852–856.

Che Arif FA, Hilmi MR, Kamal MK, Ithnin MH (2021). Comparison of Immediate Effects on Usage of Dual Polymer Artificial Tears on Changes in Tear Film Characteristics, Malaysian J Med Health Sci (MJMHS),17(3): 252-258.

Hilmi MR, Khairidzan MK, Ariffin AE. Norazmar NA, Maruziki NN, Musa NH, Nasir MS, Azemin MZC, Azami MH, Abdul Rahim MAS. Effects of Different Types of Primary Pterygium on Changes in Oculovisual Function. Sains Malaysiana. 2020;49(2):383-388.

Hilmi MR, Azemin MZC, Khairidzan MK, Ariffin AE, Abdul Rahim MAS, Mohd Tamrin MI. Reliability of Pterygium Redness Grading Software (PRGS) in describing different types of primary pterygia based on appearance. Sains Malaysiana. 2020;49(5): 1015-1020.

Hilmi MR, Khairidzan MK, Azemin MZC, Azami MH, Ariffin AE. Corneo-pterygium Total Area Measurements Utilizing Image Analysis Method, J Optom, 2019;12(4): 272 - 277.

Che Azemin MZ, Hilmi MR, Mohd Tamrin MI, Mohd Kamal K. Fibrovascular redness grading using Gaussian process regression with radial basis function kernel. In Biomedical Engineering and Sciences (IECBES), 2014 IEEE Conference on 2014 Dec 8 (pp. 113–116). IEEE.

Che Azemin MZ, Mohd Tamrin MI, Hilmi MR, Mohd Kamal K. Inter-grader reliability of a supervised pterygium redness grading system. Adv Sci Lett 2016;22(10):2885-2888. ISSN 1936-6612

Tarib I, Kasier I, Herbers C, Hagen P, Breyer D, Holland D, Lucchesi R, Teisch S, Auffarth GU, Gerl M, Kretz FTA. Benefits of a Rotationally Asymmetric Enhanced Depth of Focus, Bifocal Segment Intraocular Lens in an Older Cataract Population Ranging from 74 to 82 Years. EC Ophthalmology, 2018;9:248–256.

Savini G, Schiano-lomoriello D, Balducci N, Barboni P. Visual performance of a new extended depth-of-focus intraocular lens compared to a distance-dominant diffractive multifocal intraocular lens. J Refract Surg, 2018;34(4):228–235. https://doi.org/10.3928/1081597X-20180125-01.

Kawamura J, Tanabe H, Shojo T, Yamauchi T, Takase K, Tabuchi H. Comparison of visual performance between diffractive bifocal and diffractive trifocal intraocular lenses. Sci Reps. 2024;14(1), 5292. https://doi.org/10.1038/s41598-024-55926-5

Chang DH. Visual acuity and patient satisfaction at varied distances and lighting conditions after implantation of an aspheric diffractive multifocal one-piece intraocular lens. Clin Ophthalmol. 2016;10:1471–7. doi: 10.2147/OPTH.S108298

Han KE, Lee JE. Comparative Evaluation of Visual Performance and Patient Satisfaction following Cataract Surgery: A Retrospective Analysis of an Extended Depth-of-Focus Intraocular Lens and a Diffractive Multifocal Lens with Extended Depth of Focus. J Clin Med. 2023;12(23):7368. doi:10.3390/jcm12237368

Ávila FJ, Casado P, Marcellán MC, et al. Subjective Straylight Index: A Visual Test for Retinal Contrast Assessment as a Function of Veiling Glare. J Imaging. 2024;10(4):89. doi:10.3390/jimaging10040089

Ungewiss J, Schiefer U, Eichinger P, Wörner M, Crabb DP, Jones PR. Does intraocular straylight predict night driving visual performance? Correlations between straylight levels and contrast sensitivity, halo size, and hazard recognition distance with and without glare. Front Hum Neurosci. 2022;16:910620. doi:10.3389/fnhum.2022.910620

Abdul-Kadir MA, Hilmi MR, Mohd Kamal K. Safety and efficacy of "hydro-fluorescein" technique in removing Tenon in pterygium surgery: a 1-year follow-up study. Eye (Lond). 2025 Apr;39(6):1081-1085. doi: 10.1038/s41433-024-03539-7.

McAlinden C, Pesudovs K, Moore JE. The development of an instrument to measure quality of vision: The quality of vision (QoV) questionnaire. Invest Ophthalmol Vis Sci, 2010;51(11):5537–5545. https://doi.org/10.1167/iovs.10-5341

Kim DR, Yoon YC, Whang WJ, Hwang HS, Na KS. Ocular parameters associated with visual performance of enhanced monofocal intraocular lens. BMC Ophthalmol. 2024;24(1):74. doi:10.1186/s12886-024-03316-w

Moore J, Østergaard J, Kretz F. Visual performance and patient preference with bilateral implantation of an extended depth of focus or combined implantation of an extended depth of focus/trifocal intraocular lens. Int Ophthalmol. 2024;44(1):80. doi:10.1007/s10792-024-03030-y

Maxwell A, Holland E, Cibik L, Fakadej A, Foster G, Grosinger L, Moyes A, Nielsen S, Silverstein S, Toyos M, Weinstein A, Hartzell S. Clinical and patient-reported outcomes of bilateral implantation of a +2.5 diopter multifocal intraocular lens. J Cataract Refract Surg. 2017;43(1):29-41. doi: 10.1016/j.jcrs.2016.10.026. PMID: 28317674.

Grzybowski A, Kanclerz P. Muzyka-Woźniak M. Methods for evaluating quality of life and vision in patients undergoing lens refractive surgery. Graefes Arch Clin Exp Ophthalmol. 2019;257:1091–1099. https://doi.org/10.1007/s00417-019-04270-w

Lwowski C, Rusev V, Kohnen T. Assessment of Visual Habituation Measured With the Halo & Glare Simulator and Its Impact on Patient Satisfaction Following Quadrifocal IOL Implantation. J Refract Surg. 2023;39(8):510-517. doi:10.3928/1081597X-20230612-01.

Li LP, Yuan LY, Mao DS, Hua X, Yuan XY. Systematic bibliometric analysis of research hotspots and trends on the application of premium IOLs in the past 2 decades. Int J Ophthalmol. 2024;17(4):736-747. doi:10.18240/ijo.2024.04.19

Garcin T, Grivet D, Thuret G, Gain P. Using Optical Quality Analysis System for predicting surgical parameters in age-related cataract patients. PLoS One. 2020;15(10):e0240350. doi: 10.1371/journal.pone.0240350. PMID: 33044993; PMCID: PMC7549767.

Yao L, Xu Y, Han T, Qi L, Shi J, Zou Z, Zhou X. Relationships Between Haloes and Objective Visual Quality in Healthy Eyes. Transl Vis Sci Technol. 2020;9(10):13. doi: 10.1167/tvst.9.10.13.

Zhao F, Han T, Chen X, Chen Z, Zheng K, Wang X, Zhou X. Minimum pupil in pupillary response to light and myopia affect disk halo size: a cross-sectional study. BMJ Open. 2018;8(4):e019914. doi: 10.1136/bmjopen-2017-019914.

Md Rejab NS, Mohd Radzi H, Kamal, MK. (2023) Association Between Visual Performance and Aberration Using QIRC Questionnaire in Moderate and High Myopic Patient, International Journal of Allied Health Sciences, 7(5):268-279.

Teshigawara T, Meguro A, Mizuki N. The Effect of Age, Postoperative Refraction, and Pre- and Postoperative Pupil Size on Halo Size and Intensity in Eyes Implanted with a Trifocal or Extended Depth-of-Focus Lens. Clin Ophthalmol. 2021;15:4141-4152. doi: 10.2147/OPTH.S327660.

Babizhayev MA, Deyev AI, Yermakova VN, Davydova NG, Kurysheva NI, Doroshenko VS, Zhukotskii AV. Image analysis and glare sensitivity in human age-related cataracts. Clin Exp Optom. 2003;86(3):157-72. doi: 10.1111/j.1444-0938.2003.tb03098.x.

Babizhayev MA, Minasyan H, Richer SP. Cataract halos: a driving hazard in aging populations. Implication of the Halometer DG test for assessment of intraocular light scatter. Appl Ergon. 2009;40(3):545-53. doi: 10.1016/j.apergo.2007.09.003.

Lackner B, Pieh S, Schmidinger G, Hanselmayer G, Simader C, Reitner A, Skorpik C. Glare and halo phenomena after laser in situ keratomileusis. J Cataract Refract Surg. 2003;29(3):444-50. doi: 10.1016/s0886-3350(02)01816-3.

Allen RJ, Saleh GM, Litwin AS, Sciscio A, Beckingsale AB, Fitzke FW. Glare and halo with refractive correction. Clin Exp Optom. 2008;91(2):156-60. doi: 10.1111/j.1444-0938.2007.00220.x.

M&S Technologies Inc. M&S Smart System II Use and Operation Guide. Illinois, IMP-0706:2011

Kretz FT, Attia MA, Linz K, Auffarth GU. [Level of Binocular Pseudoaccommodation in Patients Implanted with an Apodised, Diffractive and Trifocal Multifocal Intraocular Lens]. Klin Monbl Augenheilkd. 2015;232:947-52.