Effects of Fluid Ingestion on Intraocular Pressure in Normal Young Malaysian Adults
Main Article Content
Abstract
Introduction: Intraocular pressure (IOP) is an important parameter in diagnosing and monitoring glaucoma. IOP is dynamic and its measurement and monitoring is challenging. Water Drinking Test (WDT) is a test to evaluate the fluctuation of IOP due to fluid ingestion. This study aimed to investigate the effect of WDT on IOP in normal young healthy adults. Materials and Methods: Eighty participants were recruited in this prospective study. Comprehensive optometric examination were done including Goldmann application tonometry and visual field (VF) testing. Refractive error were objectively measured using Shin Nippon SLM-500 auto-refractometer. VF testing was done using automated perimetry. All procedures were performed between 08:00 to 12:00 PM, and every 5 minutes for 30 minutes after 1000mls of water. All data were analysed using repeated measures analysis of variance (RM-ANOVA). Results: Immediately after the WDT, the IOP increase to its peak at 10 minute and reducing trend was observed from the peak to the 30 minutes timeline. RM-ANOVA analysis revealed significant changes in IOP measurements between baseline and 30 minutes observation period (P < 0.001). Post hoc comparisons using the Tukey HSD test indicated the changes in IOP between right after drinking to at 10 minutes (mean = 17.8, SD = 2.3) was significant compared to other time intervals (P < 0.001). No significance difference (P = 0.09) in IOP between baseline and 30 minutes. Conclusion: WDT is a meaningful, quicker alternative test in attempting to uncover diurnal IOP characteristics in clinic, thus reducing both time requirements and associated costs.
Downloads
Article Details
References
Yap TE, Gao Y, Ahmad H, Susanna F, Susanna R, Normando EM, Bloom PA, Cordeiro MF. Comparison of intraocular pressure profiles during the water drinking test and the modified diurnal tension curve. Eye (Lond). 2024;38(8):1567-1574. doi: 10.1038/s41433-024-02954-0.
De Bernardo M, Cione F, De Pascale I, Pagliarulo S, Rosa N. Intraocular Pressure Measurements in Standing, Sitting, Prone, and Supine Positions. J Pers Med. 2024;14(8):826. doi: 10.3390/jpm14080826.
Olatunji OP, Olawoye O, Ajayi B. Correlation and Agreement Between Water Drinking Test and Modified Diurnal Tension Curve in Untreated Glaucoma Patients in Nigeria. J Glaucoma. 2020;29(6):498-503. doi: 10.1097/IJG.0000000000001493.
Firat PG, Dikci S, Firat İT, Demirel S, Firat M, Öztürk E, Gök ZE. Correlation between intraocular pressure obtained with water drinking test versus modified diurnal tension curve measurement in pseudoexfoliation glaucoma. Int Ophthalmol. 2021;41(8):2879-2886. doi: 10.1007/s10792-021-01847-5.
Grippo TM, Liu JH, Zebardast N, Arnold TB, Moore GH, Weinreb RN. Twenty-four-hour pattern of intraocular pressure in untreated patients with ocular hypertension. Invest Ophthalmol Vis Sci. 2013;54(1):512-7. doi: 10.1167/iovs.12-10709.
Mansouri K, Tanna AP, De Moraes CG, Camp AS, Weinreb RN. Review of the measurement and management of 24-hour intraocular pressure in patients with glaucoma. Surv Ophthalmol. 2020;65(2):171-186. doi: 10.1016/j.survophthal.2019.09.004.
Jin E, Goh CXY, Betzler BK, Heng CP, Ang BCH. Assessing the value of the water drinking test in glaucoma-a systematic review and meta-analysis. Eye (Lond). 2024 May 7. doi: 10.1038/s41433-024-03107-z.
Germano RA, Hatanaka M, Susanna R Junior. Choroidal thickness variation in highly myopic eyes during the water drinking test. Arq Bras Oftalmol. 2016;79(4):214-7. doi: 10.5935/0004-2749.20160062.
Lüke JN, Enders P, Händel A, Gietzelt C, Dietlein J, Schöneberger V, Lappa A, Widder R, Dietlein TS. Posture-related fluctuations of intraocular pressure in healthy children with suspicion of glaucoma. Graefes Arch Clin Exp Ophthalmol. 2024;262(1):171-177. doi: 10.1007/s00417-023-06212-z.
González-Devesa D, Suárez-Iglesias D, Diz JC, Esmerode-Iglesias A, Ayán C. Systematic review on the impact of exercise on intraocular pressure in glaucoma patients. Int Ophthalmol. 2024;44(1):351. doi: 10.1007/s10792-024-03216-4.
Krobot Cutura N, Mrak M, Cutura DM, Petric Vickovic I, Ruzic L. Evaluating Intraocular Pressure Alterations during Large Muscle Group Isometric Exercises with Varying Head and Body Positions. Int J Environ Res Public Health. 2024;21(4):476. doi: 10.3390/ijerph21040476.
McMonnies CW. The importance of and potential for continuous monitoring of intraocular pressure. Clin Exp Optom. 2017;100(3):203-207. doi: 10.1111/cxo.12497.
Priluck AZ, Hoie AB, High RR, Gulati V, Ghate DA. Effect of Near Work on Intraocular Pressure in Emmetropes. J Ophthalmol. 2020 Jan 28;2020:1352434. doi: 10.1155/2020/1352434.
Stokkermans TJ, Reitinger JC, Tye G, Kao CY, Ragupathy S, Wang HA, Toris CB. Accommodative Exercises to Lower Intraocular Pressure. J Ophthalmol. 2020 Dec 18;2020:6613066. doi: 10.1155/2020/6613066.
Mottet B, Aptel F, Romanet JP, Hubanova R, Pépin JL, Chiquet C. 24-hour intraocular pressure rhythm in young healthy subjects evaluated with continuous monitoring using a contact lens sensor. JAMA Ophthalmol. 2013;131(12):1507-16. doi: 10.1001/jamaophthalmol.2013.5297.
Susanna CN, Susanna BN, Susanna FN, Susanna R Jr, De Moraes CG. Peak Intraocular Pressure Time during Water Drinking Test and Its Relationship with Glaucoma Severity. J Ophthalmic Vis Res. 2022;17(1):27-32. doi: 10.18502/jovr.v17i1.10167.
Razeghinejad R, Tajbakhsh Z, Masoumpour MB, Nowroozzadeh MH. Intraocular Pressure Changes after Water Drinking Test in Surgically Treated Primary Congenital Glaucoma. J Ophthalmic Vis Res. 2020;15(3):318-325. doi: 10.18502/jovr.v15i3.7450.
Jais FN, Che Azemin MZ, Hilmi MR, Mohd Tamrin MI, Kamal KM. Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique. Scientific World Journal. 2021 Nov 15;2021:6211006. doi: 10.1155/2021/6211006.
Md Mustafa MMS, Abdul Mutalib H, Ab. Halim N, Hilmi MR. Accuracy of contact lens method by spherical and aspheric rigid gas permeable lenses on corneal power determination in normal eyes. Sains Malaysiana, 2020;49(6): 1431-1437.
Abdul-Kadir MA, Hilmi MR, Mohd Kamal K. Safety and efficacy of "hydro-fluorescein" technique in removing Tenon in pterygium surgery: a 1-year follow-up study. Eye (Lond). 2025 Apr;39(6):1081-1085. doi: 10.1038/s41433-024-03539-7.
Che Arif FA, Hilmi MR, Kamal MK, Ithnin MH (2021). Comparison of Immediate Effects on Usage of Dual Polymer Artificial Tears on Changes in Tear Film Characteristics, Malaysian J Med Health Sci (MJMHS),17(3): 252-258.
Hilmi MR, Khairidzan MK, Ariffin AE. Norazmar NA, Maruziki NN, Musa NH, Nasir MS, Azemin MZC, Azami MH, Abdul Rahim MAS. Effects of Different Types of Primary Pterygium on Changes in Oculovisual Function. Sains Malaysiana. 2020;49(2):383-388.
Hilmi MR, Azemin MZC, Khairidzan MK, Ariffin AE, Abdul Rahim MAS, Mohd Tamrin MI. Reliability of Pterygium Redness Grading Software (PRGS) in describing different types of primary pterygia based on appearance. Sains Malaysiana. 2020;49(5): 1015-1020.
Hilmi MR, Khairidzan MK, Azemin MZC, Azami MH, Ariffin AE. Corneo-pterygium Total Area Measurements Utilizing Image Analysis Method, J Optom, 2019;12(4): 272 - 277.
Che Azemin MZ, Hilmi MR, Mohd Tamrin MI, Mohd Kamal K. Fibrovascular redness grading using Gaussian process regression with radial basis function kernel. In Biomedical Engineering and Sciences (IECBES), 2014 IEEE Conference on 2014 Dec 8 (pp. 113–116). IEEE.
Che Azemin MZ, Mohd Tamrin MI, Hilmi MR, Mohd Kamal K. Inter-grader reliability of a supervised pterygium redness grading system. Adv Sci Lett 2016;22(10):2885-2888.
Ikegami K, Shigeyoshi Y, Masubuchi S. Circadian Regulation of IOP Rhythm by Dual Pathways of Glucocorticoids and the Sympathetic Nervous System. Invest Ophthalmol Vis Sci. 2020;61(3):26. doi: 10.1167/iovs.61.3.26.
Qin VL, Nguyen BJ, Tripp P, Lehman A, Addis VM, Cui QN. Elevated IOP following a bladder filling protocol: A case report. Am J Ophthalmol Case Rep. 2022;29:101786. doi: 10.1016/j.ajoc.2022.101786.
Chen ZQ, Chen W, Deng CH, Guo JM, Zhang H, Wang JM. In vivo quantification of human aqueous veins by enhanced depth imaging optical coherence tomography and optical coherence tomography angiography images. Int J Ophthalmol. 2023;16(9):1482-1488. doi: 10.18240/ijo.2023.09.15.
Ikegami K. Circadian rhythm of intraocular pressure. J Physiol Sci. 2024;74(1):14. doi: 10.1186/s12576-024-00905-8.
Xu D, Wu F, Yu Y, Lou X, Ye M, Zhang H, et al. Sympathetic activation leads to Schlemm's canal expansion via increasing vasoactive intestinal polypeptide secretion from trabecular meshwork. Exp Eye Res. 2022;224:109235. doi: 10.1016/j.exer.2022.109235.
Nongpiur ME, Foo VH, de Leon JM, Baskaran M, Tun TA, Husain R, et al. Evaluation of Choroidal Thickness, Intraocular Pressure, and Serum Osmolality After the Water Drinking Test in Eyes With Primary Angle Closure. Invest Ophthalmol Vis Sci. 2015;56(4):2135-43. doi: 10.1167/iovs.14-15280.
Nagasato D, Mitamura Y, Egawa M, Kameoka M, Nagasawa T, Tabuchi H, et al. Changes of choroidal structure and circulation after water drinking test in normal eyes. Graefes Arch Clin Exp Ophthalmol. 2019;257(11):2391-2399. doi: 10.1007/s00417-019-04427-7.
Kocabeyoglu S, Uzun S, Kadayifcilar S, Mocan MC, Irkec M. The Relationship Between Choroidal Expansion and Intraocular Pressure Rise During the Water Drinking Test in Healthy Subjects and Patients With Exfoliation Syndrome. J Glaucoma. 2016;25(4):e324-8. doi: 10.1097/IJG.0000000000000283.
Kandarakis SA, Katsimpris A, Kourti P, Psinakis F, Karmiris E, Papakonstantinou E, et al. The Effect of the Water Drinking Test on Ocular Parameters and Choroidal Thickness in Glaucoma Suspects. Medicina (Kaunas). 2023;59(2):381. doi: 10.3390/medicina59020381.
Bhatti MS, Tang TB, Laude A. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study. PLoS One. 2017;12:e0181512.
Song YJ, Kim YK, Jeoung JW, Park KH. Assessment of Open-Angle Glaucoma Peripapillary and Macular Choroidal Thickness Using Swept-Source Optical Coherence Tomography (SS-OCT). PLoS One. 2016;11(6):e0157333. doi: 10.1371/journal.pone.0157333.
Park Y, Kim HK, Cho KJ. Comparison of peripapillary and macular choroidal thickness and ganglion cell complex thickness in glaucomatous and healthy eyes. Int J Ophthalmol. 2019;12(4):603-606. doi: 10.18240/ijo.2019.04.13.
Sakata R, Aihara M, Murata H, Saito H, Iwase A, Yasuda N. Intraocular pressure change over a habitual 24-hour period after changing posture or drinking water and related factors in normal tension glaucoma. Invest Ophthal Vis Sci 2013; 54:5313-20.
Hatanaka M, Sakata LM, Susanna R Jr, Nascimento LT, Vessani RM. Comparison of the Intraocular Pressure Variation Provoked by Postural Change and by the Water Drinking Test in Primary Open-angle Glaucoma and Normal Patients. J Glaucoma. 2016;25(11):914-918. doi: 10.1097/IJG.0000000000000519.
Olatunji OP, Olawoye O, Ajayi B. Correlation and Agreement Between Water Drinking Test and Modified Diurnal Tension Curve in Untreated Glaucoma Patients in Nigeria. J Glaucoma. 2020;29(6):498-503. doi: 10.1097/IJG.0000000000001493.
Vasconcelos-Moraes CG, Susanna R Jr. Correlation between the water drinking test and modified diurnal tension curve in untreated glaucomatous eyes. Clinics (Sao Paulo). 2008;63(4):433-6. doi: 10.1590/s1807-59322008000400004.
Read SA, Collins MJ. Water drinking influences eye length and IOP in young healthy subjects. Exp Eye Res. 2010;91(2):180-185. doi:10.1016/j.exer.2010.04.015.
Jóźwik A, Przeździecka-Dołyk J, Wałek E, Czerniak M, Asejczyk M. Corneal Behavior during Tonometer Measurement during the Water Drinking Test in Eyes with XEN GelStent in Comparison to Non-Implanted Eyes. J Clin Med. 2022;11(11):2962. doi: 10.3390/jcm11112962.
Muñoz CR, Macias JH, Hartleben C. Reproducibility of the water drinking test. Arch Soc Esp Oftalmol. 2015;90(11):517-21. doi: 10.1016/j.oftal.2015.03.011.
Chen A, Virk A, Harris Z, Abazari A, Honkanen R, Arbab MH. Non-contact terahertz spectroscopic measurement of the intraocular pressure through corneal hydration mapping. Biomed Opt Express. 2021;12(6):3438-3449. doi: 10.1364/BOE.423741.
Kadambi SV, Balekudaru S, Lingam V, George R. Comparison of intraocular pressure variability detected by day diurnal variation to that evoked by water drinking. Indian J Ophthalmol. 2021;69(6):1414-1417. doi:10.4103/ijo.IJO_1149_20
Marquez-Trochez, J., Vanegas-Ramírez, C. M., Castaño-Alzate, C. F., Muñoz-Gómez, M., & Donado-Gómez, J. H. (2023). Intraocular pressure values during the water drinking test in a Colombian population. Revista de La Sociedad Colombiana de Oftalmología, 56(2). https://doi.org/10.24875/rsco.23000003