Comparative in Vitro Antioxidant and Enzymatic Inhibitory Activities of Zingiber Officinale Roscoe. And Cymbopogon Nardus (L.) Rendle Essential Oils

Main Article Content

admin admin
Shu Qing Teoh
Siaw Fui Kiew
Shun Qi Kok
Elizza Ann James
Zhong Jie Lee
Privytha Goobi
Chin Siang Kue
Theebaa Anasamy

Abstract

Introduction: Diabetes mellitus affects over 400 million people worldwide. Due to the side effects of current anti-diabetic drugs, there is growing interest in natural treatments. Antioxidants help prevent diabetic complications, and inhibiting α-glucosidases and α-amylases significantly reduces post-prandial blood glucose levels. This research aims to examine the bioactive compounds in Zingiber officinale Roscoe. and Cymbopogon nardus (L.) Rendle essential oils using gas chromatography/mass spectrometry (GC/MS) and their antioxidant, as well as α-glucosidase and α-amylase inhibition activities. Methods: The chemical composition of the essential oils was determined by GC/MS analysis. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, while enzyme inhibition was assessed using α-amylase and α-glucosidase assays. Results: The major phytochemical components of Z. officinale essential oil were found to be dodecanoic acid, 1,2,3-propanetriyl ester (37.81%), dodecanoic acid, 1-(hydroxymethyl)-1,2-ethanediyl ester (9.52%), 3-(octanoyloxy)propane-1,2-diyl bis(decanoate) (4.73%), gingerol (3.62%), 1-(4-hydroxy-3-methoxyphenyl)oct-4-en-3-one (1.67%), linalool (1.46%), geranyl acetate (1.03%), zingiberene (1.08%) and farnesene (0.64%). The major phytochemical constituents in the C. nardus are dodecanoic acid, 1,2,3-propanetriyl ester (22.95%), hexadecanoic acid, 2-[(1-oxododecyl)oxy]-1,3-propanediyl ester (2.74%), D-limonene (2.49%), eudesm-11-en-1α-ol (2.01%), α-phellandrene (1.93%), D-citronellol (0.94%), geraniol (0.87%), α-terpineol (0.84%) and citronellal (0.69%). Z. officinale oil demonstrated better antioxidant (55.4%, p< 0.05), α-amylase (39.7%, p<0.05) and α-glucosidase (24.5%, p<0.05) inhibitory activity, respectively, compared to C. nardus oil. Conclusion: This finding indicates that the constituents of Z. officinale essential oil may collectively inhibit oxidative stress and enzymes linked to T2DM, and thus potentially help reduce postprandial glucose levels and diabetes complications. Further in vivo studies are required to validate these findings.

Downloads

Download data is not yet available.

Article Details

How to Cite
admin, admin, Shu Qing Teoh, Siaw Fui Kiew, Shun Qi Kok, James, E. A., Zhong Jie Lee, Privytha Goobi, Chin Siang Kue, & Theebaa Anasamy. (2026). Comparative in Vitro Antioxidant and Enzymatic Inhibitory Activities of Zingiber Officinale Roscoe. And Cymbopogon Nardus (L.) Rendle Essential Oils . Malaysian Journal of Medicine and Health Sciences, 22(1), 1427.1–1427.10. https://doi.org/10.47836/mjmhs.v22.i1.1427
Section
Original Articles

References

Jadon AS, Kaushik MP, Anitha K, Bhatt S, Bhadauriya P, Sharma M. Types of diabetes mellitus, mechanism of insulin resistance and associated complications. Biochemical Immunology of Diabetes and Associated Complications: Elsevier; 2024. p. 1-18. doi: 10.1016/B978-0-443-13195-0.00001-6.

Nadhiya J, Vijayalakshmi M, Showbharnikhaa S. A Brief Review on Diabetes Mellitus. Journal of Pharma Insights and Research. 2024;2(1):117-21. doi: 10.5281/zenodo.10631511.

Zhou B, Rayner AW, Gregg EW, Sheffer KE, Carrillo-Larco RM, Bennett JE, et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. The Lancet. 2024;404(10467):2077-93. doi: 10.1016/ S0140-6736(24)02317-1.

Caturano A, D’Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, et al. Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Current Issues in Molecular Biology. 2023;45(8):6651-66. doi: 10.3390/cimb45080420.

Raut SK, Khullar M. Oxidative stress in metabolic diseases: Current scenario and therapeutic relevance. Molecular and Cellular Biochemistry. 2023;478(1):185-96. doi: 10.1007/s11010-022-04496-z.

Sadiq IZ. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Current Molecular Medicine. 2023;23(1):13-35. doi: 10.2174/1566524022666211222161637.

Singh H, Singh R, Singh A, Singh H, Singh G, Kaur S, Singh B. Role of oxidative stress in diabetes-induced complications and their management with antioxidants. Archives of Physiology and Biochemistry. 2024;130(6):616-41. doi: 10.1080/13813455.2023.2243651.

Wang N, Zhang C. Oxidative Stress: A culprit in the progression of diabetic kidney disease. Antioxidants. 2024;13(4):455. doi: 10.3390/antiox13040455.

An Y, Xu B-t, Wan S-r, Ma X-m, Long Y, Xu Y, Jiang Z-z. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovascular Diabetology. 2023;22(1):237. doi: 10.1186/s12933-023-01965-7.

Cisneros-Yupanqui M, Lante A, Mihaylova D, Krastanov AI, Rizzi C. The α-amylase and α-glucosidase inhibition capacity of grape pomace: A review. Food and Bioprocess Technology. 2023;16(4):691-703. doi: 10.1007/s11947-022-02895-0.

Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Critical Reviews in Food Science and Nutrition. 2025;65(3):575-611. doi: 10.1080/10408398.2023.2278169.

Khan F, Khan MV, Kumar A, Akhtar S. Recent advances in the development of alpha-glucosidase and alpha-amylase inhibitors in type 2 diabetes management: Insights from In silico to In vitro Studies. Current Drug Targets. 2024;25(12):782-95. doi: 10.2174/0113894501313365240722100902.

Shafras M, Sabaragamuwa R, Suwair M. Role of dietary antioxidants in diabetes: An overview. Food Chemistry Advances. 2024;4:100666. doi: 10.1016/j.focha.2024.100666.

Etsassala N, Badmus JA, Marnewick JL, Iwuoha EI, Nchu F, Hussein AA. Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of Salvia aurita constituents. Antioxidants (Basel). 2020;9(11). doi: 10.3390/antiox9111150.

Ansari P, Akther S, Hannan J, Seidel V, Nujat NJ, Abdel-Wahab YH. Pharmacologically active phytomolecules isolated from traditional antidiabetic plants and their therapeutic role for the management of diabetes mellitus. Molecules. 2022;27(13):4278. doi: 10.3390/molecules27134278.

Sharifi-Rad M, Varoni EM, Salehi B, Sharifi-Rad J, Matthews KR, Ayatollahi SA, et al. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules. 2017;22(12):2145. doi: 10.3390/molecules22122145.

Kiani HS, Ali A, Zahra S, Hassan ZU, Kubra KT, Azam M, Zahid HF. Phytochemical composition and pharmacological potential of lemongrass (cymbopogon) and impact on gut microbiota. AppliedChem. 2022;2(4):229-46. doi: 10.3390/appliedchem2040016.

Mesomo MC, Corazza ML, Ndiaye PM, Dalla Santa OR, Cardozo L, de Paula Scheer A. Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity. The Journal of Supercritical Fluids. 2013;80:44-9. doi: 10.1016/j.supflu.2013.03.031.

Žitek T, Kučuk N, Postružnik V, Leitgeb M, Knez Ž, Primožič M, Marevci MK. Synergistic effect of supercritical and ultrasound-assisted ginger (Zingiber officinale Roscoe) extracts. Plants. 2022;11(21):2872. doi: 10.3390/plants11212872.

Guedes AR, de Souza ARC, Zanoelo EF, Corazza ML. Extraction of citronella grass solutes with supercritical CO2, compressed propane and ethanol as cosolvent: Kinetics modeling and total phenolic assessment. The Journal of Supercritical Fluids. 2018;137:16-22. doi: 10.1016/j.supflu.2018.03.003.

Putra NR, Aziz AHA, Rizkiyah DN, Yunus MAC, Alwi RS, Anggraini RT, et al. Supercritical carbon dioxide extraction of citronella oil review: Process optimization, product quality, and applications. Pertanika Journal of Tropical Agricultural Science. 2024;32(3); JST-4491-2023. doi: 10.47836/pjst.32.3.04.

Kedare SB, Singh R. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology. 2011;48:412-22. doi: 10.1007/s13197-011-0251-1.

Ünal O, Gürgen A, Krupodorova T, Sevindik M, Kabaktepe Ş, Akata I. Optimization of Phellinus hartigii extracts: Biological activities, and phenolic content analysis. BMC Complementary Medicine and Therapies. 2025;25:113. doi: 10.1186/s12906-025-04851-9.

Mesomo MC, de Paula Scheer A, Perez E, Ndiaye PM, Corazza ML. Ginger (Zingiber officinale R.) extracts obtained using supercritical CO2 and compressed propane: Kinetics and antioxidant activity evaluation. The Journal of Supercritical Fluids. 2012;71:102-9. doi: 10.1016/j.supflu.2012.08.001.

Chanthai S, Prachakoll S, Ruangviriyachai C, Luthria DL. Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand. Journal of AOAC International. 2012;95(3):763-72. doi: 10.5740/jaoacint.11-335.

Rastuti U, Diastuti H, Chasani M, Purwati P, Hidayatullah R, editors. Chemical composition and antioxidant activities of citronella essential oil Cymbopogon nardus (L.) rendle fractions. AIP Conference Proceedings; 2020: AIP Publishing. doi: 10.1063/5.0005685.

Pradeep Kumar S, Vijender S, Mohammed A. Chemical composition and antimicrobial activity of fresh rhizome essential oil of Zingiber Officinale Roscoe. Pharmacognosy Journal. 2016;8(3):185-190. doi: 10.5530/pj.2016.3.3.

Pavlić B, Teslić N, Zengin G, Đurović S, Rakić D, Cvetanović A, et al. Antioxidant and enzyme-inhibitory activity of peppermint extracts and essential oils obtained by conventional and emerging extraction techniques. Food Chemistry. 2021;338:127724. doi: 10.1016/j.foodchem.2020.127724.

Alharbi KS, Nadeem MS, Afzal O, Alzarea SI, Altamimi AS, Almalki WH, et al. Gingerol, a natural antioxidant, attenuates hyperglycemia and downstream complications. Metabolites. 2022;12(12):1274. doi: 10.3390/metabo12121274.

Jabir MS, Taha A, Sahib U. Antioxidant activity of Linalool. Engineering and Technology Journal. 2018;36(1):64-67. doi: 10.30684/etj.36.1B.11.

El-Ghorab AH, Nauman M, Anjum FM, Hussain S, Nadeem M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). Journal of Agricultural and Food Chemistry. 2010;58(14):8231-7. doi: 10.1021/jf101202x.

Sondari D, Irawadi TT, Setyaningsih D, Tursiloadi S, editors. Effect temperature of supercritical CO2 fluid extraction on phytochemical analysis and antioxidant activity of Zingiber officinale Roscoe. AIP Conference Proceedings; 2017: AIP Publishing. doi: 10.1063/1.5011904.

Fahmi A, Hassanen N, Abdur-Rahman M, Shams-Eldin E. Phytochemicals, antioxidant activity and hepatoprotective effect of ginger (Zingiber officinale) on diethylnitrosamine toxicity in rats. Biomarkers. 2019;24(5):436-47. doi: 10.1080/1354750X.2019.1606280.

Wu H, Li J, Jia Y, Xiao Z, Li P, Xie Y, et al. Essential oil extracted from Cymbopogon citronella leaves by supercritical carbon dioxide: Antioxidant and antimicrobial activities. Journal of Analytical Methods in Chemistry. 2019;2019(1):8192439. doi: 10.1155/2019/8192439.

Badrunanto, Wahyuni WT, Farid M, Batubara I, Yamauchi K. Antioxidant components of the three different varieties of Indonesian ginger essential oil: In vitro and computational studies. Food Chemistry Advances. 2024;4:100558. doi: 10.1016/j.focha.2023.100558.

Pires JB, Dos Santos FN, da Cruz EP, Fonseca LM, Siebeneichler TJ, Lemos GS, et al. Starch extraction from avocado by-product and its use for encapsulation of ginger essential oil by electrospinning. International Journal of Biological Macromolecules. 2024;254:127617. doi: 10.1016/j.ijbiomac.2023.127617.

Li X, Bai Y, Jin Z, Svensson B. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. Lwt. 2022;153:112455. doi: 10.1016/j.lwt.2021.112455.

Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: A review on recent drug-based therapeutics. Biomedicine & Pharmacotherapy. 2020;131:110708. doi: 10.1016/j.biopha.2020.110708.

Boachie RT, Boakye PG, Annor GA, Udenigwe CC. Prospects of food-derived α-glucosidase inhibitors in the management of diabetes. Food Structure and Functionality: Elsevier; 2021. p. 219-33. doi: 10.1016/B978-0-12-821453-4.00003-X.

Li K, Yao F, Xue Q, Fan H, Yang L, Li X, et al. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure–activity relationship of its eight flavonoids by a refined assign-score method. Chemistry Central Journal. 2018;12:1-11. doi: 10.1186/s13065-018-0445-y.

Hasaninezhad F, Tavaf Z, Panahi F, Nourisefat M, Khalafi-Nezhad A, Yousefi R. The assessment of antidiabetic properties of novel synthetic curcumin analogues: α-amylase and α-glucosidase as the target enzymes. Journal of Diabetes & Metabolic Disorders. 2020;19:1505-15. doi: 10.1007/s40200-020-00685-z.

Lin Q, Qiu C, Li X, Sang S, McClements DJ, Chen L, et al. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Critical Reviews in Food Science and Nutrition. 2023;63(33):12126-35. doi: 10.1080/10408398.2022.2098687.

Deleanu M, Toma L, Sanda GM, Barbălată T, Niculescu LŞ, Sima AV, et al. Formulation of phytosomes with extracts of ginger rhizomes and rosehips with improved bioavailability, antioxidant and anti-inflammatory effects in vivo. Pharmaceutics. 2023;15(4):1066. doi: 10.3390/pharmaceutics15041066.

Almatroodi SA, Alnuqaydan AM, Babiker AY, Almogbel MA, Khan AA, Husain Rahmani A. 6-Gingerol, a bioactive compound of ginger attenuates renal damage in streptozotocin-induced diabetic rats by regulating the oxidative stress and inflammation. Pharmaceutics. 2021;13(3):317. doi: 10.3390/pharmaceutics13030317.

Tunnisa F, Faridah DN, Afriyanti A, Rosalina D, Syabana MA, Darmawan N, Yuliana ND. Antioxidant and antidiabetic compounds identification in several Indonesian underutilized Zingiberaceae spices using SPME-GC/MS-based volatilomics and in silico methods. Food Chemistry: X. 2022;14:100285. doi: 10.1016/j.fochx.2022.100285.

Nickavar B, Joshaghani RA. An effect-based approach to identify α-amylase inhibitors from the essential oil of Zingiber officinale rhizome: experimental and computational studies. Food Bioscience. 2023;56:103345. doi: 10.1016/j.fbio.2023.103345.

Loukili EH, Fadil M, Elrherabi A, Er-Rajy M, Taibi M, Azzaoui K, et al. Inhibition of carbohydrate digestive enzymes by a complementary essential oil blend: in silico and mixture design approaches. Frontiers in Pharmacology. 2025;16:1522124. doi: 10.3389/fphar.2025.1522124.

Hossain U, Das AK, Ghosh S, Sil PC. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology. 2020;145:111738. doi: 10.1016/j.fct.2020.111738.

Ahmed S, Ali MC, Ruma RA, Mahmud S, Paul GK, Saleh MA, et al. Molecular docking and dynamics simulation of natural compounds from betel leaves (Piper betle L.) for investigating the potential inhibition of alpha-amylase and alpha-glucosidase of type 2 diabetes. Molecules. 2022;27(14):4526. doi: 10.3390/molecules27144526.

Oluwole OB, Ademuyiwa O. Antioxidants in spices: a review of the antioxidant components and properties of some common African spices and their role in human nutrition and plant–microbe interactions. Antioxidants in Plant-Microbe Interaction. 2021:251-89. doi: 10.1007/978-981-16-1350-0_12.

Tran-Trung H, Le DG, Hoang VT, Vu DC, Thang TD, Nguyen-Ngoc H, et al. Essential oils of two species of Zingiberaceae family from Vietnam: chemical compositions and α-glucosidase, α-amylase inhibitory effects. Natural Product Communications. 2024;19(2):1934578X241232281. doi: 10.1177/1934578X24123228.

Agnish S, Sharma AD, Kaur I. Underutilized plant Cymbopogon pendulus derived essential oil is excellent source of bioactives with diverse biological activities. Russian Agricultural Sciences. 2022;48(2):89-102. doi: 10.3103/S1068367422020136.

Etri K, Pluhár Z. Exploring chemical variability in the essential oils of the thymus genus. Plants. 2024;13(10):1375. doi: 10.3390/plants13101375.

Vambe M, Coopoosamy RM, Arthur GD, Naidoo K. Biological properties, chemical profiles and safety of essential oils from South African aromatic plants: a literature review. Journal of Essential Oil Research. 2024; 1-19. doi: 10.1080/10412905.2024.2428698.

Bampidis V, Azimonti G, Bastos MdL, Christensen H, et al. Safety and efficacy of essential oil, oleoresin and tincture from Zingiber officinale Roscoe when used as sensory additives in feed for all animal species. EFSA Journal. 2020;18(6):e06147. doi: 10.2903/j.efsa.2023.7962.

Rosol TJ, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, et al. FEMA GRAS assessment of natural flavor complexes: Lemongrass oil, chamomile oils, citronella oil and related flavoring ingredients. Food and Chemical Toxicology. 2023;175:113697. doi: 10.1016/j.fct.2023.113697.

Toukourou H, Uwambayinema F, Yakoub Y, Mertens B, Laleye A, Lison D, et al. In vitro and in vivo toxicity studies on Cymbopogon giganteus Chiov. leaves essential oil from Benin. Journal of Toxicology. 2020;2020(1):8261058. doi: 10.1155/2020/8261058.

Wojtunik-Kulesza KA. Toxicity of selected monoterpenes and essential oils rich in these compounds. Molecules. 2022;27(5):1716. doi: 10.3390/molecules27051716.