Vascular Ultrastructural Changes in Hypertensive Rodent Models: A 15-Year Scoping Review

Main Article Content

Hidayatul Radziah Ismawi
Khodijah Zulkiflee
Yusoff Sharizal Yusoff Azmi Merican
Maizura Mohd Zainudin
Azliana Abd Fuaat
Fadhilah Zainal Abidin

Abstract

Understanding ultrastructural changes in vascular tissue provides critical insights into the pathophysiology of hypertension, a leading global cause of mortality. This scoping review aims to offer a comprehensive overview of vascular ultrastructural changes in hypertensive rodent models over the past 15 years. Following the Arksey and O’Malley protocol, we conducted a scoping review of relevant literature. This involved defining research questions, identifying and selecting pertinent studies, data extraction, synthesis, and reporting. Searches encompassed Google Scholar, PubMed, Scopus, and ScienceDirect. Thirty studies were included, showcasing diverse methodologies, objectives, and findings. These studies investigated various hypertensive models, different vessels, and multiple quantitative, semi-quantitative, and qualitative parameters of vascular ultrastructure, along with different intervention strategies. This review provides a synthesis of existing knowledge on vascular ultrastructural changes in hypertensive rodent models and discusses relevance of rodent models to human hypertension, functional implications of ultrastructural changes and pharmacological interventions targeting these changes thus serving as a resource for researchers studying hypertension pathophysiology to identify therapeutic targets or assess novel interventions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ismawi, H. R., Zulkiflee, K., Yusoff Azmi Merican, Y. S., Mohd Zainudin, M., Abd Fuaat, A., & Zainal Abidin, F. (2025). Vascular Ultrastructural Changes in Hypertensive Rodent Models: A 15-Year Scoping Review. Malaysian Journal of Medicine and Health Sciences, 21(5), 302–309. https://doi.org/10.47836/mjmhs.21.5.33
Section
Review Article

References

Minen MT, Boubour A, Walia H, Barr W (2016) Post-1. Beaney T, Schutte AE, Tomaszewski M, et al. May Measurement Month 2017: an analysis of blood pressure screening results worldwide. Lancet Glob Health. 2018 Jul 1;6(7):e736-43. https://doi.org/10.1016/S2214-109X(18)30259-6

Mills KT, Bundy JD, Kelly TN, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016 Aug 9;134(6):441-50. https://doi.org/10.1161/CIRCULATIONAHA.115.018912

Perrotta I. The microscopic anatomy of endothelial cells in human atherosclerosis: Focus on ER and mitochondria. J Anat. 2020 Dec;237(6):1015-25. https://doi.org/10.1111/joa.13281

Dallak M, Haidara MA, Bin-Jaliah I, et al. Metformin suppresses aortic ultrastructural damage and hypertension induced by diabetes: a potential role of advanced glycation end products. Ultrastruct Pathol. 2019 Sep 3;43(4-5):190-8. https://doi.org/10.1080/01913123.2019.1666952

Verhoef MJ, Casebeer AL. Broadening horizons: integrating quantitative and qualitative research. Can J Infect Dis Med Microbiol. 1997 Mar 1;8:65-6. https://doi.org/10.1155/1997/349145

Cebova M, Kristek F. Age-dependent ultrastructural changes of coronary artery in spontaneously hypertensive rats. Gen Physiol Biophys. 2011 Dec 1;30(4):364-72. https://doi.org/10.4149/gpb_2011_04_364

Hayden MR, Habibi J, Joginpally T, Karuparthi PR, Sowers JR. Ultrastructure study of transgenic Ren2 rat aorta–part 1: Endothelium and intima. Cardiorenal Med. 2012 Feb 1;2(1):66-82. https://doi.org/10.1159/000335565

Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005 Feb 1;8(1):19-32. https://doi.org/10.1080/1364557032000119616

Kumar S, Prahalathan P, Saravanakumar M, Raja B. Vanillic acid prevents the deregulation of lipid metabolism, endothelin 1 and upregulation of endothelial nitric oxide synthase in nitric oxide deficient hypertensive rats. Eur J Pharmacol. 2014 Nov 15;743:117-25. https://doi.org/10.1016/j.ejphar.2014.09.010

Li Y, Yang W, Zhu Q, Yang J, Wang Z. Protective effects on vascular endothelial cell in N'-nitro-L-arginine (L-NNA)-induced hypertensive rats from the combination of effective components of Uncaria rhynchophylla and Semen Raphani. BioScience Trends. 2015;9(4):237-44. https://doi.org/10.5582/bst.2015.01087

Neto-Ferreira R, Rocha VN, da Silva Torres T, Mandarim-de-Lacerda CA, de Carvalho JJ. Beneficial effects of rosuvastatin on aortic adverse remodeling in nitric oxide-deficient rats. Experimental and toxicologic pathology. 2011 Jul 1;63(5):473-8 https://doi.org/10.1016/j.etp.2010.03.007

Palao T, Rippe C, van Veen H, VanBavel E, Swärd K, Bakker EN. Thrombospondin-4 knockout in hypertension protects small-artery endothelial function but induces aortic aneurysms. Am J Physiol-Heart Circ Physiol. 2016 Jun 1;310(11):H1486-93. https://doi.org/10.1152/ajpheart.00046.2016

Han X, Zhang DL, Yin DX, Zhang QD, Liu WH. Apelin-13 deteriorates hypertension in rats after damage of the vascular endothelium by ADMA. Can J Physiol Pharmacol. 2013;91(9):708-14. https://doi.org/10.1139/cjpp-2013-0046

Xian TK, Omar NA, Ying LW, et al. Reheated palm oil consumption and risk of atherosclerosis: evidence at ultrastructural level. Evidence-based complementary and alternative medicine. 2012 Jan 1;2012. https://doi.org/10.1155/2012/828170

Billaud M, Johnstone SR, Isakson BE. Loss of compliance in small arteries, but not in conduit arteries, after six weeks of exposure to a high-fat diet. J Cardiovasc Transl Res. 2012 Jun;5:256-63. https://doi.org/10.1007/s12265-012-9354-y

Mensah EA, Daneshtalab N, Tabrizchi R. Differential biomechanics in resistance arteries of male compared with female Dahl hypertensive rats. J Hypertens. 2022 Mar 1;40(3):596-605. https://doi.org/10.1097/HJH.0000000000003053

Moustafa AM. Light and Electron Microscopic Study of Thoracic Aorta in Premature Menopause-Induced Rats and the Possible Protective Role of Ginger. Egypt J Histol. 2010 Mar 1;33(1):114-26. Available from: https://journals.lww.com/ejhistology/fulltext/2010/03000/Light_and_Electron_Microscopic_Study_of_Thoracic.12.aspx

Olgar Y, Degirmenci S, Durak A, et al. Aging-related functional and structural changes in the heart and aorta: MitoTEMPO improves aged-cardiovascular performance. Exp Gerontol. 2018 Sep 1;110:172-81. https://doi.org/10.1016/j.exger.2018.06.012

Kristek F, Drobna M, Cacanyiova S. Different structural alterations in individual conduit arteries of SHRs compared to Wistar rats from the prehypertensive period to late adulthood. Physiol Res. 2017 Oct 1;66(5). https://doi.org/10.33549/physiolres.933690

Ye F, Wu Y, Chen Y, Xiao D, Shi L. Impact of moderate-and high-intensity exercise on the endothelial ultrastructure and function in mesenteric arteries from hypertensive rats. Life Sci. 2019 Apr 1;222:36-45. https://doi.org/10.1016/j.lfs.2019.01.058

Yildirim FI, Kizilay DE, Ergin B, et al. Barnidipine ameliorates the vascular and renal injury in L-NAME-induced hypertensive rats. Eur J Pharmacol. 2015 Oct 5;764:433-42. https://doi.org/10.1016/j.ejphar.2015.07.033

Zerbinati N, Marotta F, Nagpal R, et al. Protective effect of a fish egg homogenate marine compound on arterial ultrastructure in spontaneous hypertensive rats. Rejuvenation Res. 2014 Apr 1;17(2):176-9. https://doi.org/10.1089/rej.2013.1494

Deres L, Eros K, Cseko C, Farkas S, Habon T. The effects of bradykinin B1 receptor antagonism on the myocardial and vascular consequences of hypertension in SHR rats. Front Physiol. 2019 May 21;10:428236. https://doi.org/10.3389/fphys.2019.00624

Hannan JL, Blaser MC, Pang JJ, Adams SM, Pang SC, Adams MA. Impact of hypertension, aging, and antihypertensive treatment on the morphology of the pudendal artery. J Sex Med. 2011 Apr;8(4):1027-38. https://doi.org/10.1111/j.1743-6109.2010.02191.x

Jordão MT, Ladd FV, Coppi AA, Chopard RP, Michelini LC. Exercise training restores hypertension-induced changes in the elastic tissue of the thoracic aorta. J Vasc Res. 2011 Oct 1;48(6):513-24. https://doi.org/10.1159/000329590

Leal MA, Aires R, Pandolfi T, et al. Sildenafil reduces aortic endothelial dysfunction and structural damage in spontaneously hypertensive rats: Role of NO, NADPH and COX-1 pathways. Vasc Pharmacol. 2020 Jan 1;124:106601. https://doi.org/10.1016/j.vph.2019.106601

Bakker EN, Groma G, Spijkers LJ, et al. Heterogeneity in arterial remodeling among sublines of spontaneously hypertensive rats. PLoS One. 2014 Sep 24;9(9):e107998. https://doi.org/10.1371/journal.pone.0107998

Felix AS, Rocha VN, Nascimento AL, De Carvalho JJ. Carotid body remodelling in l-NAME-induced hypertension in the rat. J Comp Pathol. 2012 May 1;146(4):348-56. https://doi.org/10.1016/j.jcpa.2011.07.007

Ma KT, Li XZ, Li L, et al. Role of gap junctions in the contractile response to agonists in the mesenteric artery of spontaneously hypertensive rats. Hypertens Res. 2014 Feb;37(2):110-5. https://doi.org/10.1038/hr.2013.120

Kristek F, Koprdova R. Long-term effect of prazosin administration on blood pressure, heart and structure of coronary artery of young spontaneously hypertensive rats. J Physiol Pharmacol. 2011 Jun 1;62(3):295. Available from: https://jpp.krakow.pl/journal/archive/06_11/pdf/295_06_11_article.pdf

Ruseva B, Atanasova M, Georgieva M, Shumkov N, Laleva P. Effects of selenium on the vessel walls and anti-elastin antibodies in spontaneously hypertensive rats. Exp Biol Med. 2012 Feb;237(2):160-6. https://doi.org/10.1258/ebm.2011.011212

Liang YR, Ma SC, Luo XY, et al. Effects of green tea on blood pressure and hypertension-induced cardiovascular damage in spontaneously hypertensive rat. Food Sci Biotechnol. 2011 Feb;20:93-8. https://doi.org/10.1007/s10068-011-0013-x

Liang Y, Wang J, Gao H, Wang Q, Zhang J, Qiu J. Beneficial effects of grape seed proanthocyanidin extract on arterial remodeling in spontaneously hypertensive rats via protecting against oxidative stress. Mol Med Rep. 2016 Oct 1;14(4):3711-8. https://doi.org/10.3892/mmr.2016.5699

Takemori K, Yamamoto E, Ito H, Kometani T. Prophylactic effects of elastin peptide derived from the bulbus arteriosus of fish on vascular dysfunction in spontaneously hypertensive rats. Life Sci. 2015 Jan 1;120:48-53. https://doi.org/10.1016/j.lfs.2014.10.011

de Andrade Moraes-Teixeira J, Félix A, Fernandes-Santos C, Moura AS, Mandarim-de-Lacerda CA, de Carvalho JJ. Exercise training enhances elastin, fibrillin and nitric oxide in the aorta wall of spontaneously hypertensive rats. Exp Mol Pathol. 2010 Dec 1;89(3):351-7. https://doi.org/10.1016/j.yexmp.2010.08.004