Osteoporosis: Its Mainstream Treatments and Potential Prevention with Phytochemicals: A Review

Main Article Content

Nur Najihah Ahmad Puat
Yoke Keong Yong
Nizar Abd Manan

Abstract

Osteoporosis is known as a common skeletal condition marked by reduced bone strength, which results in a higher likelihood of fractures, particularly among the elderly. This disease affects millions globally, posing significant burden on patients and healthcare systems. Current pharmacological treatment, including bisphosphonates, denosumab, and teriparatide, are effective but associated with adverse effects over long-term use. Non-pharmacological approaches, such as calcium supplementation and vitamin D, are also common without risks but not when taken in excess. As interest grows in natural alternatives approach, this review explores the potential of phytochemicals which exhibit unique bioactive properties such as Eurycoma longifolia, Labisia pumila, Piper sarmentosum, Herba epimedii, Glycine max, and Psoralea corylifolia in preventing and treating osteoporosis. The review critically compares the advantages and limitations of phytochemical approaches against conventional treatments, advocating further research into their safety and efficacy as complementary options for managing osteoporosis.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ahmad Puat, N. N., Yoke Keong Yong, & Abd Manan, N. (2025). Osteoporosis: Its Mainstream Treatments and Potential Prevention with Phytochemicals: A Review. Malaysian Journal of Medicine and Health Sciences, 21(5), 316–327. https://doi.org/10.47836/mjmhs.21.5.35
Section
Review Article

References

Sozen T, Ozisik L, Calik Basaran N. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56. doi: 10.5152/eurjrheum.2016.048

Lems WF, Raterman HG, Van Den Bergh JPW, Bijlsma HWJ, Valk NK, Zillikens MC, et al. Osteopenia: A diagnostic and therapeutic challenge. Curr Osteoporos Rep. 2011;9(3):167–72. doi: 10.1007/s11914-011-0062-3

Tu KN, Lie JD, Wan CKV, Cameron M, Austel AG, Nguyen JK, et al. Osteoporosis: A review of treatment options. P and T. 2018;43(2):92–104.

Dawane J, Dhande P. Advances in Non-Pharmacological and Pharmacological Management of Osteoporosis. Gerontology & Geriatrics. 2016;2(4):1–6.

Ong T, Khor HM, Kumar CS, Singh S, Chong EGM, Ganthel K, et al. The current and future challenges of hip fracture management in Malaysia. Malays Orthop J. 2020;14(3):16–21. doi: 10.5704/MOJ.2011.004

Subramaniam S, Chan C Yi, Soelaiman I Nirwana, Mohamed N, Jamil NA, Chin K yong. Prevalence and Predictors of Osteoporosis Among the Chinese Population in Klang Valley, Malaysia. Applied Science. 2019;9(9):1–11. doi: https://doi.org/10.3390/app9091820

Christodoulou C, Cooper C. What is osteoporosis? Postgraduate Medical Journal. 2002;79:133–8. doi: https://doi.org/10.1136/pmj.79.929.133

Cheung EYN, Tan KCB, Cheung CL, Kung AWC. Osteoporosis in East Asia: Current issues in assessment and management. Osteoporos Sarcopenia. 2016;2(3):118–33. doi: 10.1016/j.afos.2016.07.001

Alswat KA. Gender Disparities in Osteoporosis. J Clin Med Res. 2017;9(5):382–7. doi: 10.14740/jocmr2970w

Demontiero O, Vidal C, Duque G. Aging and bone loss: New insights for the clinician. Ther Adv Musculoskelet Dis. 2012;4(2):61–76. doi: 10.1177/1759720X11430858

Sutton RAL, Dian L, Guy P. Osteoporosis in men: An underrecognized and undertreated problem. BC Medical Journal [Internet]. 2011;53(10):535–40. Available from: https://bcmj.org/articles/osteoporosis-men-underrecognized-and-undertreated-problem

Sobh MM, Abdalbary M, Elnagar S, Nagy E, Elshabrawy N, Abdelsalam M, et al. Secondary Osteoporosis and Metabolic Bone Diseases. Secondary Osteoporosis and Metabolic Bone Diseases. Journal of Clinical Medicine, 11(9), 2382. doi: 10.3390/jcm11092382

Suvarna V, Sarkar M, Chaubey P, Khan T, Sherje A, Patel K, et al. Bone Health and Natural Products - An Insight. Front Pharmacol. 2018;9(SEP):1–12. doi: 10.3389/fphar.2018.00981

Rehman SU, Choe K, Yoo HH. Review on a Traditional Herbal Medicine, Eurycoma longifolia Jack (Tongkat Ali): Its Traditional Uses, Chemistry, Evidence-Based Pharmacology and Toxicology. Molecules. 2016;21(331). doi: 10.3390/molecules21030331

Farag MA, Ajayi AO, Taleb M, Wang K, Ayoub IM. A Multifaceted Review of Eurycoma longifolia Nutraceutical Bioactives: Production, Extraction, and Analysis in Drugs and Biofluids. ACS Omega, 8(2), 1838–1850. doi: 10.1021/acsomega.2c06340

Shuid AN, Abu Bakar MF, Abdul Shukor TA, Muhammad N, Mohamed N, Soelaiman IN. The anti-osteoporotic effect of Eurycoma Longifolia in aged orchidectomised rat model. The aging male: the official journal of the International Society for the Study of the Aging Male. 2011;14(3):150–4. doi: 10.3109/13685538.2010.511327

Mohd Effendy N, Mohamed N, Muhammad N, Naina Mohamad I, Shuid AN. Eurycoma longifolia: Medicinal Plant in the Prevention and Treatment of Male Osteoporosis due to Androgen Deficiency. Evidence-Based Complementary and Alternative Medicine. 2012;2012:1–9. doi: 10.1155/2012/125761

Thu HE, Mohamed IN, Hussain Z, Shuid AN. Eurycoma longifolia as a potential alternative to testosterone for the treatment of osteoporosis: Exploring time-mannered proliferative, differentiative and morphogenic modulation in osteoblasts. Journal of ethnopharmacology 2017;195, 143–158. doi: 10.1016/j.jep.2016.10.085

Jayusman PA, Mohamed IN, Alias E, Mohamed N, Shuid AN. The Effects of Quassinoid-Rich Eurycoma longifolia Extract on Bone Turnover and Histomorphometry Indices in the Androgen-Deficient Osteoporosis Rat Model. Nutrients. 2018; 10(7), 799. doi: 10.3390/nu10070799

Fathilah SN, Mohamed N, Muhammad N, Mohamed IN, Soelaiman IN, Shuid AN. Labisia pumila regulates bone-related genes expressions in postmenopausal osteoporosis model. BMC complementary and alternative medicine. 2013;13(1):1. doi: 10.1186/1472-6882-13-217

Abdullah N, Siavash HC, Chua LS, Mohammad Roji S. Labisia pumila: A Review on its Traditional, Phytochemical and Biological Uses. World Appl Sci J. 2013;27(10):1297–306. doi: 10.5829/idosi.wasj.2013.27.10.1391

Jolly JJ, Chin KY, Alias E, Chua KH, Soelaiman IN. Protective effects of selected botanical agents on bone. Int J Environ Res Public Health. 2018;15(5):4–6. doi: 10.3390/ijerph15050963

Effendy NM, Shuid AN. Time and dose-dependent effects of Labisia pumila on bone oxidative status of postmenopausal osteoporosis rat model. Nutrients. 2014 Aug 21;6(8):3288–302. doi: 10.3390/nu6083288

Fathilah SN, Abdullah S, Mohamed N, Shuid AN. Labisia pumila prevents complications of osteoporosis by increasing bone strength in a rat model of postmenopausal osteoporosis. Evidence-based Complementary and Alternative Medicine. 2012;2012. doi: 10.1155/2012/948080

Mohamad Asri, S. F., Soelaiman, I. N., Mohd Moklas, M. A., Mohd Nor, N. H., Mohamad Zainal, N. H., & Mohd Ramli, E. S. The Role of Piper sarmentosum Aqueous Extract as a Bone Protective Agent, a Histomorphometric Study. International Journal of Molecular Science. 2020;21(7715):1–16. doi: 10.3390/ijms21207715

Nurdiana N, Mariati N, Noorhamdani N, Setiawan B, Budhiparama N, Noor Z. Effects of Labisia pumila on bone turnover markers and OPG/RANKL system in a rat model of post-menopausal osteoporosis. Clinical Nutrition Experimental. 2018;20:41–7. doi: https://doi.org/10.1016/j.yclnex.2018.01.002

Mohammad NA, Razaly NI, Mohd Rani MD, Mohd Aris MS, Nadia ME. An evidence-based review: The effects of Malaysian traditional herbs on osteoporotic rat models. Malaysian Journal of Medical Sciences. 2018;25(4):6–30. doi: 10.21315/mjms2018.25.4.2

Abidin IZZ, Johari AN, Ariffin ZZ, Yazid MD, Dyari HRE, Ariffin SHZ. Cytotoxic and Osteoblast Differentiation Induction Properties of Crude Polar Extract of Piper sarmentosum leaves. J Trop Life Sci. 2023 May 25;13(2):231–8. doi: https://doi.org/10.11594/jtls.13.02.01

Zainol Abidin IZ, Johari AN, Yazid MD, Zainal Ariffin Z, Eziwar Dyari HR, Zainal Ariffin SH. Osteogenic Potential and Bioactive Profiles of Piper sarmentosum Ethanolic Extract-Treated Stem Cells. Pharmaceuticals. 2023;6(5):708. doi: 10.3390/ph16050708

Zhai YK, Guo X, Pan YL, Niu YB, Li CR, Wu XL, et al. A systematic review of the efficacy and pharmacological profile of Herba Epimedii in osteoporosis therapy. Die Pharmazie. 2013;68(9):713–22.

Yang A, Yu C, Lu Q, Li H, Li Z, He C. Mechanism of Action of Icariin in Bone Marrow Mesenchymal Stem Cells. Stem Cells Int. 2019; doi: 10.1155/2019/5747298

Peng, S., Zhang, G., He, Y., Wang, X., Leung, P., Leung, K., & Qin, L. Epimedium-derived flavonoids promote osteoblastogenesis and suppress adipogenesis in bone marrow stromal cells while exerting an anabolic effect on osteoporotic bone. Bone. 2009; 45(3): 534–544. doi: 10.1016/j.bone.2009.05.022

Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, et al. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxidative medicine and cellular longevity, 2021; doi: 10.1155/2021/3268136

Ahmad A, Hayat I, Arif S, Masud T, Khalid N, Ahmed A. Mechanisms involved in the therapeutic effects of soybean (glycine max). Int J Food Prop. 2014;17(6):1332–54. doi: https://doi.org/10.1080/10942912.2012.714828

Venkatesan K, Abdulla Khan N, Shaik Alavudeen S, Pappiya EM, Paulsamy P, Natarajan R, et al. Herba Epimedii extraction overcome Rosiglitazone induced bone loss in diabetic rats. Int J Curr Res Chem Pharm Sci. 2021;8(9):7–14. doi: http://dx.doi.org/10.22192/ijcrcps.2021.08.09.002

Yong EL, Cheong WF, Huang Z, Thu WPP, Cazenave-Gassiot A, Seng KY, et al. Randomized, double-blind, placebo-controlled trial to examine the safety, pharmacokinetics and effects of Epimedium prenylflavonoids, on bone specific alkaline phosphatase and the osteoclast adaptor protein TRAF6 in post-menopausal women. Phytomedicine. 2021 Oct 1;91. doi: 10.1016/j.phymed.2021.153680

Garg S, Lule VK, Malik RK, Tomar SK. Soy Bioactive Components in Functional Perspective: A Review. International Journal of Food Properties. 2016; 9(11):2550–74. doi: https://doi.org/10.1080/10942912.2015.1136936

Ming LG, Chen KM, Xian CJ. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol. 2013;228(3):513–21. doi: 10.1002/jcp.24158

Wu Z, Liu L. The protective activity of genistein against bone and cartilage diseases. Vol. 13, Frontiers in pharmacology. 2022; 13(Sep 8):1016981 doi: 10.3389/fphar.2022.1016981

Jia M, Nie Y, Cao DP, Xue YY, Wang JS, Zhao L, et al. Potential Antiosteoporotic Agents from Plants: A Comprehensive Review. Evidence-Based Complementary and Alternative Medicine. 2012;2012:1–28. doi: 10.1155/2012/364604

Wu GJ, Chen JT, Cherng YG, Chang CC, Liu SH, Chen RM. Genistein improves bone healing via triggering estrogen receptor alpha-mediated expressions of osteogenesis-associated genes and consequent maturation of osteoblasts. Journal of agricultural and food chemistry. 2020;68(39):10639–50. doi: 10.1021/acs.jafc.0c02830

Siddiqui S, Mahdi AA, Arshad M. Genistein contributes to cell cycle progression and regulates oxidative stress in primary culture of osteoblasts along with osteoclasts attenuation. BMC complementary medicine and therapies, 2020; 20(1), 277. doi: 10.1186/s12906-020-03065-5

Marini H, Altavilla D, et al. Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Annals of internal medicine. 2007;146(12), 839–847. doi: 10.7326/0003-4819-146-12-200706190-00005

Nayeem F, Chen NW, Nagamani M, Anderson KE, Lu LJW. Daidzein and genistein have differential effects in decreasing whole body bone mineral density but had no effect on hip and spine density in premenopausal women: A 2-year randomized, double-blind, placebo-controlled study. Nutrition research (New York, N.Y.). 2009;68:70–81. doi: 10.1016/j.nutres.2019.06.007

Chen L, Chen S, Sun P, Liu X, Zhan Z, Wang J. P soralea corylifolia L.: a comprehensive review of its botany, traditional uses, phytochemistry, pharmacology, toxicology, quality control and pharmacokinetics. Chinese medicine. 2023; 18(1):4. doi: 10.1186/s13020-022-00704-6

Jia M, Nie Y, Cao DP, Xue YY, Wang JS, Zhao L, et al. Potential antiosteoporotic agents from plants: a comprehensive review. Evidence-based complementary and alternative medicine. 2012;2012:1–28. doi: 10.1155/2012/364604

Tang DZ, Yang F, Yang Z, Huang J, Shi Q, Chen D, et al. Psoralen stimulates osteoblast differentiation through activation of BMP signaling. Biochemical and biophysical research communications, 2011;405(2):256–61. doi: 10.1016/j.bbrc.2011.01.021

Ren Y, Song X, Tan L, Guo C, Wang M, Liu H, et al. A Review of the Pharmacological Properties of Psoralen. Frontiers in pharmacology. 2020;11(September):1–18. doi: 10.3389/fphar.2020.571535

Wang D, Guo J, Chai X, Yang J, Wang Y, Gao X. Dynamic variations of bioactive compounds driven by enzymes in Psoralea corylifolia L. from growth to storage and processing. Arabian Journal of Chemistry. 2022;15(1):103461. doi: https://doi.org/10.1016/j.arabjc.2021.103461

Huang Y, Liao L, Su H, Chen X, Jiang T, Liu J, et al. Psoralen accelerates osteogenic differentiation of human bone marrow mesenchymal stem cells by activating the TGF β/Smad3 pathway. Experimental and therapeutic medicine. 2021;22(3). doi: 10.3892/etm.2021.10372

Yu AXD, Xu ML, Yao P, Kwan KKL, Liu YX, Duan R, et al. Corylin, a flavonoid derived from Psoralea Fructus, induces osteoblastic differentiation via estrogen and Wnt/β-catenin signaling pathways. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2020;34(3):4311–28. doi: 10.1096/fj.201902319RRR

Pavone V, Testa G, Giardina SMC, Vescio A, Restivo DA, Sessa G. Pharmacological therapy of osteoporosis: A systematic current review of literature. Frontiers in pharmacology. 2017;8(803):1–7. doi: 10.3389/fphar.2017.00803

Rogers MJ, Mönkkönen J, Munoz MA. Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone. 2020;139(Oct):115493. doi: 10.1016/j.bone.2020.115493

Grey A, Reid IR. Differences between the bisphosphonates for the prevention and treatment of osteoporosis. Ther Clin Risk Manag. 2006;2(1):77–86.

Pazianas M, Abrahamsen B. Osteoporosis treatment: bisphosphonates reign to continue for a few more years, at least? Annals of the New York Academy of Sciences. 2016;1376(1):5–13. doi: 10.1111/nyas.13166

Barnsley J, Buckland G, Chan PE, Ong A, Ramos AS, Baxter M, et al. Pathophysiology and treatment of osteoporosis: challenges for clinical practice in older people. Aging clinical and experimental research. 2021;33(4):759–73. Doi: 10.1007/s40520-021-01817-y

Oryan A, Sahvieh S. Effects of bisphosphonates on osteoporosis: Focus on zoledronate. Life sciences. 2021;264(August 2020):118681. doi: 10.1016/j.lfs.2020.118681

McClung MR. Denosumab for the treatment of osteoporosis. Osteoporosis and sarcopenia. 2017;3(1):8–17. doi: 10.1016/j.afos.2017.01.002

Hanley DA, Adachi JD, Bell A, Brown V. Denosumab: Mechanism of action and clinical outcomes. International Journal of Clinical Practice. 2012;66(12):1139–46. doi: 10.1111/ijcp.12022

Martínez-Reina J, Calvo-Gallego JL, Pivonka P. Are drug holidays a safe option in treatment of osteoporosis? — Insights from an in silico mechanistic PK–PD model of denosumab treatment of postmenopausal osteoporosis. Journal of the mechanical behavior of biomedical materials. 2021;113(Jan):104140. doi: 10.1016/j.jmbbm.2020.104140

Meier C, Uebelhart B, Aubry-Rozier B, Birkhäuser M, Bischoff-Ferrari HA, Frey D, et al. Osteoporosis drug treatment: duration and management after discontinuation. A position statement from the Swiss Association against Osteoporosis (SVGO/ASCO). Swiss medical weekly. 2017;147:1–6. doi: 10.4414/smw.2017.14484

Eastell R, Walsh JS. Anabolic treatment for osteoporosis: teriparatide. Clinical Cases in Mineral and Bone Metabolism. 2017;14(2):173-8. doi: 10.11138/ccmbm/2017.14.1.173

Hauser B, Alonso N, Riches PL. Review of Current Real-World Experience with Teriparatide as Treatment of Osteoporosis in Different Patient Groups. Journal of Clinical Medicine. 2021;10(7):1403. doi: 10.3390/jcm10071403

Lindsay R, Krege JH, Marin F, Jin L, Stepan JJ. Teriparatide for osteoporosis: Importance of the full course. Osteoporosis International. 2016;27(8):2395–410. doi: 10.1007/s00198-016-3534-6

Akkawi I, Zmerly H. Osteoporosis: Current concepts. Joints. 2018;6(2):122–7. doi: 10.1055/s-0038-1660790

Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI J. 2020;19:1017–37. doi: 10.17179/excli2020-2591

Levine JP. Pharmacologic and nonpharmacologic management of osteoporosis. Clin Cornerstone. 2006;8(1):40–53. doi: 10.1016/s1098-3597(06)80064-5

Weinberg AE, Patel CJ, Chertow GM, Leppert JT. Diabetic severity and risk of kidney stone disease. European urology. 2014;65(1):242–7. doi: 10.1016/j.eururo.2013.03.026

Coronado-Zarco R, Olascoaga-Gómez de León A, García-Lara A, Quinzaños-Fresnedo J, Nava-Bringas TI, Macías-Hernández SI. Nonpharmacological interventions for osteoporosis treatment: Systematic review of clinical practice guidelines. Osteoporos Sarcopenia. 2019;5(3):69–77. doi: 10.1016/j.afos.2019.09.005

Geddes JAA, Inderjeeth CA. Evidence for the treatment of osteoporosis with vitamin d in residential care and in the community dwelling elderly. Biomed Res Int. 2013;2013 :463589. doi: 10.1155/2013/463589

Body JJ, Bergmann P, Boonen S, Boutsen Y, Devogelaer JP, Goemaere S, et al. Evidence-based guidelines for the pharmacological treatment of postmenopausal osteoporosis: A consensus document by the Belgian Bone Club. Osteoporosis International. 2010;21(10):1657–80. doi: 10.1007/s00198-010-1223-4

Berg KM, Kunins H V., Jackson JL, Nahvi S, Chaudhry A, Harris KA, et al. Association Between Alcohol Consumption and Both Osteoporotic Fracture and Bone Density. American Journal of Medicine. 2008;121(5):406–18. doi: 10.1016/j.amjmed.2007.12.012

Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL. Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. American Journal of Clinical Nutrition. 2001;74(5):694–700. doi: 10.1093/ajcn/74.5.694

Kim SY. Coffee consumption and risk of osteoporosis. Korean journal of family medicine. 2014;35(1):1. doi: 10.4082/kjfm.2014.35.1.1

Shahab L. Smoking and Bone Health. National Centre for Smoking Cessation and Training. 2012;(December):1–6.

Al-Bashaireh AM, Haddad LG, Weaver M, Chengguo X, Kelly DL, Yoon S. The Effect of Tobacco Smoking on Bone Mass: An Overview of Pathophysiologic Mechanisms. Journal of osteoporosis. 2018;1206235. doi: 10.1155/2018/1206235

Yoon V, Maalouf NM, Sakhaee K. The effects of smoking on bone metabolism. Osteoporosis International. 2012;23(8):2081–92. doi: 10.1007/s00198-012-1940-y

Tong X, Chen X, Zhang S, Huang M, Shen X, Xu J, et al. The Effect of Exercise on the Prevention of Osteoporosis and Bone Angiogenesis. BioMed research international. 2019; 8171897. doi: 10.1155/2019/8171897

Carter, M. I., & Hinton, P. S. (2014). Physical activity and bone health. Missouri medicine, 2014;111(1):59–64.