The Intricate Nexus: The Relationship between Oxidative Stress and Inflammation in Obesity
Main Article Content
Abstract
Obesity, defined as excessive fat storage, is linked to chronic low-grade inflammation and increased reactive oxygen species (ROS) generation. Inflammatory cells, such as neutrophils and macrophages, produce ROS during oxidative bursts to attack infections. However, in obese people, increased ROS generation in hypertrophic and hypoxic adipose tissue maintains a chronic inflammatory state. ROS and Damage-Associated Molecular Patterns (DAMPs) generated by stressed adipocytes activate inflammatory pathways and transcription factors, including nuclear factor-kappa B (NF-κB). Identifying such mechanisms highlights the possibility of targeting ROS generation and inflammatory pathways to reduce chronic inflammation and enhance metabolic health in obesity. This review seeks to clarify the complex link between oxidative stress, inflammation, and obesity.
Downloads
Article Details
References
Aras M, Tchang BG, Pape J. Obesity and Diabetes. Nurs Clin North Am. 2021;56(4):527–41. doi:10.1016/j.cnur.2021.07.008.
Elías-López D, Vargas-Vázquez A, Mehta R, Cruz Bautista I, Del Razo Olvera F, Gómez-Velasco D, et al. Natural course of metabolically healthy phenotype and risk of developing Cardiometabolic diseases: a three years follow-up study. BMC Endocr Disord. 2021;21(1). doi: 10.1186/s12902-021-00754-1.
Ferguson D, Finck BN. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat Rev Endocrinol. 2021;17(8):484–95. doi: 10.1038/s41574-021-00507-z.
Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol. 2017;960:1–17. doi: 10.1007/978-3-319-48382-5_1.
Institute of Public Health. Non-Communicable Diseases & Healthcare Demand. National Health and Morbity Survey (NHMS). 2019 [cited 2024 Aug 15]. Available from: https://iku.gov.my/nhms
Simoes ICM, Karkucinska‐wieckowska A, Janikiewicz J, Szymanska S, Pronicki M, Dobrzyn P, et al. Western Diet Causes Obesity-Induced Nonalcoholic Fatty Liver Disease Development by Differentially Compromising the Autophagic Response. Antioxidants. 2020;9(10):995. doi:10.3390/antiox9100995.
Sharif S, Sharif H, Rehman J, Fatima Z. Is a sedentary lifestyle a leading causal factor of obesity and distress in type 2 diabetes? A cross-sectional study in low-socioeconomic areas of Karachi, Pakistan. BMJ Public Heal. 2023;1(1). doi:10.1136/bmjph-2023-000149.
Ghosh S, Paul M, Mondal KK, Bhattacharjee S, Bhattacharjee P. Sedentary lifestyle with increased risk of obesity in urban adult academic professionals: an epidemiological study in West Bengal, India. Sci Reports. 2023; 13(1):4895. doi: 10.1038/s41598-023-31977-y.
Evgi̇n D, Kılıç KM. Relationship between healthy life awareness, emotional eating, obesity awareness, and coping stress in adolescents. Psychol Sch. 2022;60(6):1898–917. doi:10.1002/pits.22834.
Ertz M, Le Bouhart G. The Other Pandemic: A Conceptual Framework and Future Research Directions of Junk Food Marketing to Children and Childhood Obesity. J Macromarketing. 2021;42(1):30–50. doi: 10.1177/02761467211054354.
Jakubiak GK, Osadnik K, Lejawa M, Kasperczyk S, Osadnik T, Pawlas N. Oxidative Stress in Association with Metabolic Health and Obesity in Young Adults. Oxid Med Cell Longev. 2021;2021:9987352. doi: 10.1155/2021/9987352.
Khutami C, Sumiwi SA, Khairul Ikram NK, Muchtaridi M. The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. Int J Mol Sci. 2022;23(4):2056. doi: 10.3390/ijms23042056.
Yilmaz MI, Romano M, Basarali MK, Elzagallaai A, Karaman M, Demir Z, et al. The Effect of Corrected Inflammation, Oxidative Stress and Endothelial Dysfunction on Fmd Levels in Patients with Selected Chronic Diseases: A Quasi-Experimental Study. Sci Rep. 2020;10(1):9018. doi: 10.1038/s41598-020-65528-6.
Dinu M, Ruzzolini J, Higashi Y. Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease. Antioxidants 2022, Vol 11, Page 1958. 2022;11(10):1958. doi:10.3390/antiox11101958.
Zhang B, Pan C, Feng C, Yan C, Yu Y, Chen Z, et al. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2022;27(1):45–52. doi:10.1080/13510002.2022.2046423.
Miyata Y, Mukae Y, Harada J, Matsuda T, Mitsunari K, Matsuo T, et al. Pathological and Pharmacological Roles of Mitochondrial Reactive Oxygen Species in Malignant Neoplasms: Therapies Involving Chemical Compounds, Natural Products, and Photosensitizers. Mol. 2020;25(22):5252. doi: 10.3390/molecules25225252.
Rizwan H, Kumar S, Kumari G, Pal A. High glucose-induced increasing reactive nitrogen species accumulation triggered mitochondrial dysfunction, inflammation, and apoptosis in keratinocytes. Life Sci. 2023:312:121208. doi: 10.1016/j.lfs.2022.121208.
Zhu Q, An YA, Scherer PE. Mitochondrial regulation and white adipose tissue homeostasis. Trends Cell Biol. 2022;32(4):351-364. doi: 10.1016/j.tcb.2021.10.008.
Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6(1):1–46. doi:10.1038/s41392-021-00658-5
von Vietinghoff S, Koltsova EK. Inflammation in atherosclerosis: A key role for cytokines. Cytokine. 2019;122:154819. doi: 10.1016/j.cyto.2019.154819.
Hukshorn CJ, Lindeman JHN, Toet KH, Saris WHM, Eilers PHC, Westerterp-Plantenga MS, et al. Leptin and the Proinflammatory State Associated with Human Obesity. J Clin Endocrinol Metab. 2004;89(4):1773–8. doi:10.1210/jc.2003-030803.
Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne). 2021;12:585887. doi: 10.3389/fendo.2021.585887.
Socol CT, Chira A, Martinez-Sanchez MA, Nuñez-Sanchez MA, Maerescu CM, Mierlita D, et al. Leptin Signaling in Obesity and Colorectal Cancer. Int J Mol Sci. 2022;23(9):4713. doi:10.3390/ijms23094713
Wen JH, Li DY, Liang S, Yang C, Tang JX, Liu HF. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol. 2022;13:946832. doi:10.3389/fimmu.2022.946832.
De Benedetti F, Prencipe G, Bracaglia C, Marasco E, Grom AA. Targeting interferon-γ in hyperinflammation: opportunities and challenges. Nat Rev Rheumatol. 2021;17(11):678-691. doi:10.1038/s41584-021-00694-z.
Yahfoufi N, Alsadi N, Jambi M, Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10(11):1618. doi:10.3390/nu10111618.
Dludla P V., Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, et al. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients. 2018;11(1):23. doi: 10.3390/nu11010023.
Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 2018;48(9):e12997. doi: 10.1111/eci.12997.
Zha L, Chen J, Sun S, Mao L, Chu X, Deng H, et al. Soyasaponins Can Blunt Inflammation by Inhibiting the Reactive Oxygen Species-Mediated Activation of PI3K/Akt/NF-kB Pathway. PLoS One. 2014;9(9):e107655. doi:10.1371/journal.pone.0107655.
Lv F, Yang L, Wang J, Chen Z, Sun Q, Zhang P, et al. Inhibition of TNFR1 Attenuates LPS Induced Apoptosis and Inflammation in Human Nucleus Pulposus Cells by Regulating the NF-KB and MAPK Signalling Pathway. Neurochem Res. 2021;46(6):1390-1399. doi:10.1007/s11064-021-03278-1.
Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2020;8(3):287–297. doi:10.1016/j.gendis.2020.06.005.
Kamata H, Honda SI, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120(5):649–61. doi:10.1016/j.cell.2004.12.041.
Marfella R, Cacciapuoti F, Grassia A, Manfredi E, De Maio G, Caruso G, et al. Role of the ubiquitin-proteasome system in carotid plaque instability in diabetic patients. Acta Cardiol. 2006;61(6):630–6. doi:10.2143/AC.61.6.2017962.
Baeuerle PA, Baltimore D. IκB: a Specific Inhibitor of the NF-κB Transcription Factor. Science. 1988;242(4878):540–6. doi:10.1126/science.3140380.
Bhatt D, Ghosh S. Regulation of the NF-κB-mediated transcription of inflammatory genes. Front Immunol. 2014;5:71. doi:10.3389/fimmu.2014.00071.
Liao F, Andalibi A, DeBeer FC, Fogelman AM, Lusis AJ. Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest. 1993; 91(6):2572–2579. doi:10.1172/JCI116495.
Hanada T, Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 2002;13(4–5):413–21. doi:10.1016/s1359-6101(02)00026-6.
Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6). doi:10.26402/jpp.2019.6.01.
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. doi:10.3390/ijms21176275.
Bhattacharya S. Reactive Oxygen Species and Cellular Defense System. Free Radicals Hum Heal Dis. 2015;17–29. doi: 10.1007/978-81-322-2035-0_2.
Tang Y, Yang S, Yao M, Yang M, Wei L, Chen H, et al. Hemoglobin induces inflammation through NF-kB signaling pathway and causes cell oxidative damage in grass carp (Ctenopharyngodon idella). Front Immunol. 2022;13:1044299. doi:10.3389/fimmu.2022.1044299.
Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators Inflamm. 2020;2020(1):7527953. doi:10.1155/2020/7527953.
Eguchi T, Taha EA. Extracellular Vesicle-Associated Moonlighting Proteins: Heat Shock Proteins and Metalloproteinases. Heat Shock Proteins. 2020;1–18. doi:10.1007/7515_2020_25.
Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95–112. doi:10.1038/s41577-019-0215-7.
Wang X, Antony V, Wang Y, Wu G, Liang G. Pattern recognition receptor-mediated inflammation in diabetic vascular complications. Med Res Rev. 2020;40(6):2466-2484. doi:10.1002/med.21711.
Liu J peng, Liu S cheng, Hu S qi, Lu J feng, Wu C lei, Hu D xia, et al. ATP ion channel P2X purinergic receptors in inflammation response. Biomed Pharmacother. 2023;158:114205. doi:10.1016/j.biopha.2022.114205.
Sun L, Wang X, Saredy J, Yuan Z, Yang X, Wang H. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol. 2020;37:101759. doi:10.1016/j.redox.2020.101759.
Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwälder M, Tacke F. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease – novel insights into cellular communication circuits. J Hepatol. 2022;77(4):1136–1160. doi:10.1016/j.jhep.2022.06.012.
Matsushita M, Nakamura T, Moriizumi H, Miki H, Takekawa M. Stress-responsive MTK1 SAPKKK serves as a redox sensor that mediates delayed and sustained activation of SAPKs by oxidative stress. Sci Adv. 2020;6(26). doi:10.1126/sciadv.aay9778.
Lingappan K. NF-κB in oxidative stress. Curr Opin Toxicol. 2018;7:81–86. doi:10.1016/j.cotox.2017.11.002.
Griffin MJ. On the Immunometabolic Role of NF-κB in Adipocytes. Immunometabolism. 2022 [cited 2024 Jul 16];4(1). Available from: https://pmc/articles/PMC8893669/
Vilas-Boas EA, Almeida DC, Roma LP, Ortis F, Carpinelli AR. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells. 2021;10(12):3328. doi:10.3390/cells10123328.
Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of Mitochondrial Electron Transport Chain Assembly. J Mol Biol. 2018;430(24):4849– 4873. doi:10.1016/j.jmb.2018.09.016.
Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015;6:472–85. doi:10.1016/j.redox.2015.09.005.
To EE, O’Leary JJ, O’Neill LAJ, Vlahos R, Bozinovski S, Porter CJH, et al. Spatial Properties of Reactive Oxygen Species Govern Pathogen-Specific Immune System Responses. Antioxid Redox Signal. 2020;32(13):982–992. doi: 10.1089/ars.2020.8027.
Rastogi R, Geng X, Li F, Ding Y. NOX activation by subunit interaction and underlying mechanisms in disease. Front Cell Neurosci. 2017;10:301. doi:10.3389/fncel.2016.00301.
Kuddus SA, Bhuiyan MI, Subhan N, Shohag MH, Rahman A, Hossain MM, et al. Antioxidant-rich Tamarindus indica L. leaf extract reduced high-fat diet-induced obesity in rat through modulation of gene expression. Clin Phytoscience. 2020;6(1). doi:10.1186/s40816-020-00213-9
Pourhabibi-Zarandi F, Rafraf M, Zayeni H, Asghari-Jafarabadi M, Ebrahimi AA. Effects of curcumin supplementation on metabolic parameters, inflammatory factors and obesity values in women with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Phyther Res. 2022;36(4):1797-1806. doi:10.1002/ptr.7422.
Zhang W, Yu H, Lin Q, Liu X, Cheng Y, Deng B. Anti-inflammatory effect of resveratrol attenuates the severity of diabetic neuropathy by activating the Nrf2 pathway. Aging (Albany NY). 2021;13(7):10659–10671. doi:10.18632/aging.202830.
Jiang LS, Li W, Zhuang TX, Yu JJ, Sun S, Ju ZC, et al. Ginsenoside ro ameliorates high-fat diet–induced obesity and insulin resistance in mice via activation of the G protein–coupled bile acid receptor 5 pathway. J Pharmacol Exp Ther. 2021;377(3):441–451. doi:10.1124/jpet.120.000435.
Hashim KN, Chin KY, Ahmad F. The Mechanism of Kelulut Honey in Reversing Metabolic Changes in Rats Fed with High-Carbohydrate High-Fat Diet. Molecules. 2023;28(6):2790. doi:10.3390/molecules28062790.
Stojanov S, Berlec A, Štrukelj B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorg. 2020;8(11):1715. doi:10.3390/microorganisms8111715.
An Y, Dai H, Duan Y, Cheng L, Shi L, He C, et al. The relationship between gut microbiota and susceptibility to type 2 diabetes mellitus in rats. Chinese Med (United Kingdom). 2023; 18(1):49. doi:10.1186/s13020-023-00717-9.
Tseng CH, Wu CY. The gut microbiome in obesity. J Formos Med Assoc. 2019;118:S3–9. doi: 10.1016/j.jfma.2018.07.009.