Deciphering the Roles of Long Non-coding RNA and MicroRNA in Hepatocellular Carcinoma: A Review
Main Article Content
Abstract
The burden of primary liver cancer, hepatocellular carcinoma (HCC) is on rapidly expanding globally. Therefore, it is worthwhile to explore the mechanism of HCC progression. To date, evidence suggests that non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play significant roles in HCC progression. However, the underlying molecular mechanism of ncRNAs in HCC is yet to be fully understood. This review highlights the roles of lncRNA at transcription and post-transcriptional levels. In addition, the function of miRNAs in HCC progression and therapy are also discussed. The overview of the regulation and functional roles of ncRNAs could potentially contribute to the development of novel therapeutic targets in HCC.
Downloads
Article Details
References
Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nature Reviews Disease Primers 2021; 7(6): 1-28.
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A., Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589-604. doi:10.1038/s41575-019-0186-y.
Bachok N, Che Ghazali CN. Epidemiology and survival of hepatocellular carcinoma in North-east Peninsular Malaysia. Asian Pac J Cancer Prev 2013, 14(11): 6955-6959.
Raihan R, Azzeri A, Shabaruddin FH, Mohamad R. Hepatocellular carcinoma in Malaysia and its changing trend. Euroasian J Hepatogastroenterol 2018; 1(1): 54-56. doi: 10.5005/jp-journals-10018-1259.
Wang W, Chen Y, Wu L, Zhang Y, Yoo S, et al. HBV genome-enriched single cell sequencing revealed heterogeneity in HBV-driven hepatocellular carcinoma (HCC). BMC Medical Genomics 2022; 15; 134. https://doi.org/10.1186/s12920-022-01264-2.
Nakano M, Yatsuhashi H, Bekki S, Takami Y, Tanaka Y, et al. Trends in hepatocellular carcinoma incident cases in Japan between 1996 and 2019. Scientific Reports 2022; 12: 1517. https://doi.org/10.1038/s41598.022-05444-z.
Zakhari S. Chronic alcohol drinking: Liver and pancreatic cancer? Clinics and Research in Hepatology and Gastroenterology 2015; 39: 586-591. http://dx.doi.org/10.1016/j.2015.05.006.
Osborne TF, Espenshade PJ. Lipid balance must be right to prevent development of severe liver damage. J Clin Invest 2022; 132: 11. https://doi.org/10.1172/JCI60326.
Shau WY, Shao YY, Yeh YC, Lin ZZ, Kuo R, Hsu CH, et al. Diabetes mellitus is associated with increased mortality in patients receiving curative therapy for hepatocellular carcinoma. The Oncologist 2012; 17: 856-862. http://dx.doi.org/10.1634/theoncologist.2012-0065.
Hagstrom H, Ndegwa N, Jalmeus M, Ekstedt M, Posserud I, Rorsman F, et al. Morbidity, risk of cancer and mortality in 3645 HFE mutations carriers. Liver International 2021; 41: 545-553. doi: 10.1111/liv.14792.
Arai S, Kogiso T, Ogasawara Y, Sagawa T, Taniai M, Tokushige K. Long-term outcome of Wilson’s disease complicated by liver disease. Journal of Gastroenterology and Hepatology 2021; 5: 793-800. doi: 10.1002/jgh3.12589.
Li D, Sedano S, Allen R, Gong J, Cho M, Sharma S. Current treatment landscape for advanced hepatocellular carcinoma: Patients outcomes and the impact on quality of life. Cancers, 2019; 11: 1-18. doi: 10.3390/cancers11060841.
Kumari R, Sahu MK, Tripathy A, Uthansingh K, Behera M. Hepatocellular carcinoma treatment: hurdles, advances and prospects. Hepat. Oncol, 2018; 5(2): 1-14. doi: 10.2217/hep-2018-0002.
Cucchetti A, Elshaarwy O, Han G, Chong CCN, Serra C, O’Rourke, et al. Potential curative therapies for hepatocellular carcinoma: how many patients can be actually be cured? British Journal of Cancer 2023; 128: 1665-1671.
Feng MY, Chan LL, Chan SL. Drug treatment for advanced hepatocellular carcinoma: First-line and beyond. Curr. Oncol 2022; 29: 5489-5507.
Gomes CPC, Ágg B, Andova A, Arslan S, et al. Catalyzing transcriptomics research in cardiovascular disease: The CardioRNA COST Action CA17129. Non-coding RNA 2019; 5(31): 1-13. doi: 10.3390/ncrna5020031.
Kaikkonen MU, Lam MTY, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovascular Research 2011; 90: 430-440. doi: 10.1093/cvr/cvr097.
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Springer Nature Limited 2021; 22: 96-118. https://doi.org/10.1038/s41580-020-00315-9.
Hermans-Beijnsberger S, van Bilsen M, Schroen B. Long non-coding RNAs in the failing heart and vasculature. Non-coding RNA Research 2018; 1-13. https://doi.org/10.1016/j.ncrna.2018.04.02.
Fernandes JCR, Acuna sm, Aoki JI, Floeter-Winter LM, Muxel SM. Long non-coding RNAs in the regulation of gene expression: Physiology and disease. Non coding RNA 2019; 5(17): 1-25. doi:10.3390/ncrna5010017.
Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. Journal of Animal Science and Technology 2018; 60: 25. https://doi.org/10.1186/s40781-018-0183-7.
Xie R, Wang M, Zhou W, Wang D, Yuan Y, Shi H, et al. Long non-coding RNA (LncRNA) UFC1/miR-34a contributes to proliferation and migration in breast cancer. Med Sci Monit 2019; 25: 7149-7157. doi: 10.12659/MSM.917562.
Feng J, Zhang J, Li Y, Cheng W, Liu Y, Chen Z, et al. Inhibition of lncRNA PCAT19 promotes breast cancer proliferation. Cancer Medicine 2023; 12: 11971-11982. doi: 10.1002/cam4.5872.
Luo H, Xu C, Le W, Ge B, Wang T. LncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA-150. J Cell Biochem 2019; 120: 13487-13493. doi: 10.1002/jcb.28622.
Dai G, Huang C, Yang J, Jin L, Fu K, Yuan F, et al. LncRNA SNGH3 promotes bladder cancer proliferation and metastasis through miR-515-5p/GINS2 axis. J Cell Mol Med 2020; 24: 9231-9243. doi: 10.1111/jcmm.15564.
Wan L, Kong J, Tang J, Wu Y, Xu E, Lai M, et al. HOTAIRM1 as a potential biomarker for diagnosis of colorectal cancer functions the role in the tumour suppressor. J. Cell. Mol. Med. 2016; 20: 2036-2044. doi: 10.1111/jcmm.12982.
Zhang Q, Cheng Q, Xia M, Huang X, He X, Liao J. Hypoxia-induced lncRNA-NEAT1 sustains the growth of hepatocellular carcinoma via regulation of miR-199a-3p/UCK2. Frontiers in Oncology 2020; 10: 998. doi: 10.3389/fonc.2020.00998.
Li N, Li J, Mi Q, Xie Y, Li P, Wang L, et al. Long non-coding RNA ADAMTS9-AS1 suppresses colorectal cancer by inhibiting the Wnt/β-catenin signalling pathway and is a potential diagnostic biomarker. J Cell Mol Med 2020; 24: 11318-11329. doi: 10.1111/jcmm.15713.
Cui PH, Li ZY, Li DH, Han SY, Zhang YJ. SP1-induced lncRNA DANCR contributes to proliferation and invasion of ovarian cancer. Kaohsiung J Med Sci 2020; 37: 371-378. doi: 10.1002/kjm2.12316.
Zhan FL, Chen CF, Yao MZ. LncRNA TUG1 facilitates proliferation, invasion and stemness of ovarian cancer cell via miR-186-5p/ZEB1 axis. Cell Biochem Funct 2020; 38: 1069-1078. doi: 10.1002/cbf.3544.
Liu Z, Chen JY, Zhong Y, Xie L, Li JS. LncRNA MEG3 inhibits the growth of hepatocellular carcinoma cells by sponging miR-9-5p to upregulate SOX11. Brazilian Journal of Medical and Biological Research 2019; 52 (10). http://dx.doi.org/10.1590/1414-431X20198631.
Yuan Y, Ye J, Zhang X, Liu Z. LncRNA CASC2 regulate cell proliferation and invasion by targeting miR-155/SOCS1 axis in hepatocellular carcinoma. Journal of Oncology 2023. https://doi.prg/10.1155/2023/8457112.
Deng W, Wang J, Zhang J, Cai J, Bai Z, Zhang Z. TET2 regulates lncRNA-ANRIL expression and inhibits the growth of human gastric cancer cells. IUBMB Life 2016; 68 (5): 355-364. doi: 10.1002/iub.1490.
Zhao S, Yu M, Wang L. LncRNA miR503HG regulates the drug resistance of recurrent cervical squamous cell carcinoma cells by regulating miR-155/caspase-3. Cancer Management and Research 2020; 12: 1579-1585. http://doi.org/10.2147/CMAR.S225489.
Chen X, Xiong D, Ye L, Wang K, Huang L, Mei S, et al. Up-regulated lncRNA XIST contributes to progression of cervical cancer via regulating miR-140-5p and ORC1. Cancer Cell Int 2019; 19-45. https://doi.org/10.1186/s12935-019-0744-y.
Ji F, Wuerkenbieke D, He Y, Ding Y, Du R. Long noncoding RNA HOTAIR: An oncogene in human cervical cancer interacting with microRNA-17-5p. Oncology Research 2018; 26: 353-361. https://doi.org/10.3727/096504017X150028969385155.
Xi J, Feng J, Zeng S, Huang P. Long noncoding RNA UFC1 is activated by E2F1 and exerts oncogenic properties by functioning as a ceRNA of FOXP3. Cancer Medicine 2018; 7: 3301-3310. doi: 10.1002/cam4.1556.
Chen Y, Zhao F, Cui D, Jiang R, Chen J, Huang Q, et al. HOXD-AS1/miR-130a sponge regulates glioma development by targeting E2F8. Int. J. Cancer 2018; 142: 2313-2322.
Lei S, He Z, Chen T, Guo X, Zeng Z, Shen Y, et al. Long noncoding RNA 00976 promotes pancreatic cancer progression through OTUD78 by sponging miR-137 involving EGFR/MAPK pathway. Journal of Experimental & Clinical Cancer Research 2019; 38: 470. https://doi.org/10.1186/s13046-019-1388-4.
Qiu X, Shi Q, Zhang X, Shi X, Jiang H, Qin S. LncRNA A2M-AS1 promotes ferroptosis in pancreatic cancer via interacting with PCBP3. Mol Cancer Res 2022; 20: 1636-1645. doi: 10.1158/1541-7786.MCR.22-0024.
Policarpo R, Sierksma A, Strooper BD, d’Ydewalle C. From junk to function: LncRNAs in CNS health and disease. Front Mol Neurosci 2021; 14. doi: 10.3389/fnmol.2021.714768.
Guo T, Gong C, Wu P, Battaglia-Hsu SF, Feng J, Liu P, et al. LINC00662 promotes hepatocellular carcinoma progression via altering genomic methylation profiles. Cell Death & Differentiation 2020; 27: 2191-2205. https://doi.org/10.1038/s41418-020-0494-3.
Song Y, Wang S, Cheng X. LINC01006 regulates the proliferation, migration and invasion of hepatocellular carcinoma cells through regulating miR-433-3p/CBX3 axis. Annals of Hepatology 2021; 25. https://doi.org/10.1016/j.aohep.2021.100343.
Gao JZ, Li J, Du JL, Li XL. Long non-coding RNA HOTAIR is a marker for hepatocellular carcinoma progression and tumor recurrence. Oncology Letters 2016; 11: 1791-1798. doi: 10.3892/ol.2016.4130.
Wang Y, Yang L, Chen T, Liu X, Guo Y, Zhu Q, et al. A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis. Molecular Cancer 2019; 18. https://doi.org/10.1186/s12943-019-0957-7.
Yan X, Zhang D, Wu W, Wu S, Qian J, Hao J, et al. Mesenchymal stem cells promote hepatocarcinogenesis via lncRNA-MUF interaction with ANXA2 and miR-34a. Cancer Res 2017; 77(23). doi: 10.1158/0008-5472.CAN-17-1915.
Huang MD, Chen WM, Qi FZ, Xia R, Sun M, Xu TP, et al. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2. Journal of Hematology & Oncology 2015; 8: 57. doi 10.1186/s13045-015-0153-1.
Yi T, Luo H, Qin F, Jiang Q, He S, Wang T, et al. LncRNA LL22NC03-N14H11.1 promoted hepatocellular carcinoma progression through activating MAPK pathway to induce mitochondrial fission. Cell Death & Disease 2020; 11: 832. https://doi.org/10.1038/s41419-020-2584-z.
Liu Y, Liu J, Cui J, Zhong R, Sun G. Role of lncRNA LINC01194 in hepatocellular carcinoma via the miR-655-3p/SMAD family member 5 axis. Bioengineered 2022; 13 (1): 1115-1125. https://doi.org/10.1080/21655979.2021.2017678.
Xu X, Yin Y, Tang J, Xie Y, Han Z, Zhang X, et al. Long non-coding RNA Myd88 promotes growth and metastasis in hepatocellular carcinoma via regulating Myd88 expression through H3K27 modification. Cell Death & Disease 2017; 8. http://dx.doi.org/10.1038/cddis.2017.519.
Liu JY, Chen YJ, Feng HH, Chen ZL, Yang JE, Zhuang SM. LncRNA SNGH17 interacts with LRPPRC to stabilize c-Myc protein and promote G1/S transition and cell proliferation. Cell Death and Disease 2021; 12: 970. https://doi.org/10.1038/s4149-021-04238-x.
Lin Y, Jian Z, Jin H, Wei X, Zhou X, Guan R, et al. Long non-coding RNA DLGAP1-AS1 facilitates tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via the feedback loop of miR-26a/b-5p/IL-6/JAK2/STAT3 and Wnt/β-catenin pathway. Cell Death and Disease 2020; 11: 34. doi: 10.1038/s41419-019-2188-7.
Yang L, Xie F, Xu W, Xu T, Ni Y, Tao X, et al. Long non-coding RNA XIST accelerates hepatic carcinoma progression by targeting the microRNA-320a/PIK3CA axis. Oncology Letters 2021; 22: 801. doi: 10.3892/ol.2021.13062.
Tian Q, Yan X, Yang L, Liu Z, Yuan Z, Zhang Y. LncRNA CYTOR promotes cell proliferation and tumor growth via miR-125b/SEMA4C axis in hepatocellular carcinoma. Oncology Letters 2021; 22: 796. doi: 10.3892/ol .2021.13057.
Teng F, Zhang JX, Chang QM, Wu XB, Tang WG, Wang JF, et al. LncRNA MYLK-AS1 facilitates tumor progression and angiogenesis by targeting miR-424-5p/E2F7 axis and activating VEGFR-2 signaling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res 2020; 39: 235. https://doi.org/10.1186/s13046-020-01739-z.
Lu Q, Wang H, Lei X, Ma Q, Zhao J, Sun W, et al. LncRNA ALKBH3-AS1enhances ALKBH3 mRNA stability to promote hepatocellular carcinoma cell proliferation and invasion. J Cell Mol Med 2022; 26: 5291-5302. doi: 10.1111/jcmm.17558.
Mo Z, Wang Z. Deciphering role of lncRNA 91H in liver cancer: Impact on tumorigenesis. Cell J 2023; 25(12): 829-838. doi: 10.22074/CELLJ.2023.2010456.1395.
Fu C, Li J, Li P, Cheng D. LncRNA DNAJC3-AS1 promotes hepatocellular carcinoma (HCC) progression via sponging premature miR-27b. Cancer Management and Research 2021; 13: 8575-8583. https://doi.org/10.2147/CMAR.S321111.
Fan Y, Wang L, Ding Y, Sheng Q, Zhang C, Li Y, et al. Long non-coding RNA RP4-694A7.2 promotes hepatocellular carcinoma cell proliferation and metastasis through the regulation of PSAT1. Journal of Cancer 2021; 12(18): 5633-5643. doi: 10.7150/jca.59348.
Cheng C, Su N, Li G, Shen Y, Duan X. Long non-coding RNA TMCC1-AS1 predicts poor prognosis and accelerates epithelial-mesenchymal transition in liver cancer. Oncology Letters 2021; 22: 773. doi: 10.3892/ol.2021.13034.
Nokkeaw A, Thanjamrassri P, Chantaravisoot N, Tangkijvanichi P, Ariyachet C. Long non-coding RNA H19 promotes proliferation in hepatocellular carcinoma cells via H19/miR-107/CDK6 axis. Oncology Research 2023; 31(6): 989-1005.
Sun Z, Xue s, Zhang M, Xu H, Hu X, Chen S, et al. Aberrant NSUN2-mediated m5C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene 2020; 39: 6906-6919. doi: https://doi.org/10.1038/s41388-01475-w.
Pan J, Hu Y, Yuan C, Wu Y, Zhu X. LncRNA NEAT1 promotes the proliferation and metastasis of hepatocellular carcinoma by regulating the FOXP3/PKM2 axis. Front. Oncol. 2022; 12: 1-12. doi: 10.3389/fonc.2022.928022.
Koyama S, Tsuchiya H, Amisaki M, Sakaguchi H, Honjo S, Fujiwara Y, et al. NEAT1 is required for the expression of the liver cancer stem cell marker CD44. Int.J. Mol. Sci 2020; 21(1927): 1-18. doi: 10.3390/ijms21061927.
Wu R, Liu W, Yang Q, Zhang J, Hou P, Xiong J, et al. LncTUG1 promotes hepatocellular carcinoma immune evasion via upregulating PD-L1 expression. Scientific Reports 2023; 13(16998): 1-11. doi: https://doi.org/10.1038/s41598-023-42948-8.
Lv J, Kong Y, Gao Z, Liu Y, Zhu P, Yu Z. LncRNA TUG1 interacting with miR-144 contributes to proliferation, migration and tumorigenesis through activating the JAK2/STAT3 pathway in hepatocellular carcinoma. The International Journal of Biochemistry & Cell Biology 2018; 101: 19-28. doi: https://doi.org/10.1016/j.biocel.2018.05.010.
Zhang J, Li Zhe, Liu L, Wang Q, Li S, Chen D, et al. Long Noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology 2018; 67(1). doi: 10.1002/hep.29405.
Hu J, Song C, Duan B, Zhang X, Li D, Zhu L, et al. LncRNA-SVUGP2 suppresses progression of hepatocellular carcinoma. Oncotarget 2017; 8(58): 97835-97850.
Yan S, Tang Z, Chen K, Liu Y, Yu G, Chen Q, et al. Long noncoding RNA MIR31HG inhibits hepatocellular carcinoma proliferation and metastasis by sponging microRNA-575 to modulate ST7L expression. Journal of Experimental & Clinical Research 2018; 37: 214. https://doi.org/10.1186/s13046-018-0853-9.
Pan W, Zhang N, Liu W, Liu J, Zhou L, Liu Y, et al. The long noncoding RNA GAS8-AS1 suppresses hepatocarcinogenesis by epigenetically activating the tumor suppressor GAS8. J. Biol. Chem 2018; 293(44): 17154-17165.
Qian HG. Wu Q, Wu JH, Tian XY, Xu W, Hao CY. Long non-coding RNA LINC00238 suppresses the malignant phenotype of liver cancer by sponging miR-522. Molecular Medicine Reports 2022; 25; 71. doi: 10.3892/mmr.2022.12587.
Sheng JQ, Wang MR, Fang D, Liu L, Huang WJ, Tian DA, et al. LncRNA NBR2 inhibits tumorigenesis by regulating autophagy in hepatocellular carcinoma. Biomedicine & Pharmacotherapy 2021; 133.
Yu Z, Zhao H, Feng X, Li H, Qiu C, Yi X, et al. Long non-coding RNA FENDRR acts as a miR-423-5p sponge to suppress the Treg-mediated immune escape of hepatocellular carcinoma cells. Molecular Therapy: Nucleic Acids 2019; 17.
Ni W, Zhang Y, Zhan Z, Ye F, Liang Y, Huang J, et al. A novel lncRNA uc.134 represses hepatocellular carcinoma progression by inhibiting CUL4A-mediated ubiquitination of LATS1. Journal of Hematology & Oncology 2017; 10: 91. doi: 10.1186/s13045-017-0449-4. doi: 10.1186/s13045-017-0449-4.
Lei GL, Fan HX, Wang C, Niu Y, Li TL, Yu LX, et al. Long non-coding ribonucleic acid W5 inhibits progression and predicts favorable prognosis in hepatocellular carcinoma. World J Gastroenterol 2021; 27(1): 55-68. doi: 10.3748/wjg.v27.i1.55.
Liu Y, Liu R, Zhai J, Zeng Z, Shi Z, Lu Q, et al. LncRNA TMEM220-AS1 suppresses hepatocellular carcinoma cell proliferation and invasion by regulating the TMEM220/ß-catenin axis. Journal of Cancer 2021; 12(22): 6805-6813. doi: 10.7150/jca.63351.
Ding H, Liu J, Zou R, Cheng P, Su Y. Long non-coding RNA TPTEP1 inhibits hepatocellular carcinoma progression by suppressing STAT3 phosphorylation. Journal of Experimental & Clinical Cancer Research 2019; 38: 189. https://doi.org/10.1186/s13046-019-1193-0.
Chen W, Tou J, Zheng Q, Zhu YY. Downregulation of lncRNA OGFRP1 inhibits hepatocellular carcinoma progression by AKT/ß mTOR and Wnt/ß-catenin signaling pathways. Cancer Management and Research 2018; 10: 1817-1826. http://dx.doi.org/10.2147/CMAR.S164911.
Wu Y, Zhou Y, Huan L, Xu L, Shen M, Huang S, et al. LncRNA MIR22HG inhibits growth, migration and invasion through regulating the miR-10a-5p/NCOR2 axis in hepatocellular carcinoma cells. Cancer Science 2019; 110: 973-984. doi: 10.1111/cas.13950.
Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, et al. Long non-coding RNAs: The regulatory mechanisms, research strategies, and future directions in cancers. Frontiers in Oncology 2020, 10. doi: 10.3389/fonc.2020.598817.
Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Molecular Cancer 2015; 14(165): 1-12.
Xu X, Gu J, Ding X, Ge G, Zang X, Ji R, et al. LINC00978 promotes the progression of hepatocellular carcinoma by regulating EZH2-mediated silencing of p21 and E-cadherin expression. Cell Death and Disease 2019; 10: 752. https://doi.org/10.1038/s41419-019-1990-6.
Lim LJ, Wong SYS, Huang F, Lim S, Chong SS, Ooi LL, et al. Roles and regulation of long noncoding RNAs in hepatocellular carcinoma. Cancer Res 2019, 79: 5131-5139.
Lin Y, Jian Z, Jin H, Wei X, Zhou X, Guan R, et al. Long non-coding RNA DLGAP1-AS1 facilitates tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via the feedback loop of miR-26a/b-5p/IL-6/JAK2/STAT3 and Wnt/β-catenin pathway. Cell Death and Disease 2020; 11: 34.
Wei F, Yang L, Jiang D, Pan M, Tang G, Huang M, et al. Long noncoding RNA DUXAP8 contributes to the progression of hepatocellular carcinoma via regulating miR-422a/PDK2 axis. Cancer Medicine 2020; 9: 2480-2490. doi: 10.1002/cam4.2861.
Liu JY, Chen YJ, Feng HH, Chen ZL, Yang JE, Zhuang SM. LncRNA SNGH17 interacts with LRPPRC to stabilize c-Myc protein and promote G1/S transition and cell proliferation. Cell Death and Disease 2021; 12: 970. https://doi.org/10.1038/s4149-021-04238-x.
Finnegan EF, Pasquinelli AE. MicroRNA biogenesis: Regulating the regulators. Crit Rev Biochem Mol Biol 2013, 48(1): 51-68.
Rooij EV, Purcell AL, Levin AA. Developing microRNA therapeutics. Circ Res 2012; 110: 481-482. doi: 10.1161/CIRCRESAHA.111.247916.
Smolarz B, Durczynski A, Romanowics H, Szyllo K, Hogendorf P. miRNAs in cancer (Review of literature). Int. J. Mol.Sci 2022; 23: 2805. https://doi.org/10.3390/ijms23052805.
Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. Journal of Experimental & Clinical Cancer Research 2018; 37: 324. https://doi.org/10.1186/s13046-018-0965-2.
Iwai N, Yasui K, Tomie A, Gen Y, Terasaki K, Kitaichi T, et al. Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma. Journal of Oncology 2018; 53: 237-245. doi: 10.3892/ijo.2018.4369.
Wang C, Wang X, Su Z, Fei H, Liu X, Pan Q. miR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1. Oncotarget 2015; 6(34).
Chang W, Zhang L, Xian Y, Yu Z. MicroRNA-33a promotes cell proliferation and inhibits apoptosis by targeting PPARa in human hepatocellular carcinoma. Experimental and Therapeutic Medicine 2017; 13: 2507-2514. doi: 10.3892/etm.2017.4236.
Chen HA, Li CC, Lin YJ, Wang TF, Chen MC, Su YH, et al. Hsa-miR-107 regulates chemosensitivity and inhibits tumor growth in hepatocellular carcinoma cells. Aging 2021; 13(8): 1-12.
Zeng YB, Liang XH, Zhang GX, Jiang N, Zhang T, Huang JY, et al. miRNA-135a promotes hepatocellular carcinoma cell migration and invasion by targeting forkhead box O1. Cancer Cell Int 2016; 16: 63. doi 10.1186/s12935-016-0328-z.
Deng X, Cheng J, Zhan N, Chen J, Zhan Y, et al. MicroRNA-135a expression is upregulated in hepatocellular carcinoma and targets long non-coding RNA TONSL-AS1 to suppress cell proliferation. Oncology Letters 2021; 22: 808. doi: 10.3892/ol.2021.13069.
Fu X, Wen H, Jing L, Yang Y, Wang W, Liang X, et al. MicroRNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI3K/Akt pathway. Cancer Sci 2017; 108: 620-631. doi: 10.1111/cas.13177.
Yang J, He Y, Zhai N, Ding S, Li J, Peng Z. MicroRNA-181a inhibits autophagy by targeting Atg5 in hepatocellular carcinoma. Frontiers in Bioscience, Landmark 2018; 23: 388-396.
Li J, Fu H, Xu C, Tie Y, Xing R, Zhu J, et al. miR-183 inhibits TGF-ß1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cell. BMC Cancer 2010; 10; 354. http://www.biomedcentral.com/1471-2407/10/354.
Yang Y, Zhang J, Xia T, Li G, Tian T, Wang M, et al. MicroRNA-210 promotes cancer angiogenesis by targeting fibroblast growth factor receptor-like 1 in hepatocellular carcinoma. Oncology Reports 2016; 36: 2553-2562. doi: 10.3892/or.2016.5129.
Ma D, Tao X, Gao F, Fan C, Wu D. miR-224 functions as an onco-miRNA in hepatocellular carcinoma cells by activating AKT signaling. Oncology Letters 2012; 4; 483-488. doi: 10.3892/ol.2012.742.
Chen YL, Xu QP, Guo F, Guan WH. MicroRNA-302d downregulates TGFBR2 expression and promotes hepatocellular carcinoma growth and invasion. Experimental and Therapeutic Medicine 2017; 13: 681-687.
Tu K, Liu Z, Yao B, Han S, Yang W. MicroRNA-519a promotes tumor growth by targeting PTEN/PI3K/AKT signaling in hepatocellular carcinoma. International Journal of Oncology 2016; 48; 965-974. doi: 10.3892/ijo.2015.3309.
Zhang Y, Zhang C, Zhao Q, Wei W, Dong Z, Shao L, et al. The miR-873/NDFIP1 axis promotes hepatocellular carcinoma growth and metastasis through the AKT/mTOR-mediated Warburg effect. Am J Cancer Res 2019; 9(5): 927-944.
Song L, Zhang W, Chang Z, Pan Y, Zong H, Fan Q, et al. miR-4417 targets tripartite motif-containing 35 (TRIM35) and regulates pyruvate kinase muscle 2 (PKM2) phosphorylation to promote proliferation and suppress apoptosis in hepatocellular carcinoma cells. Med Sci Monit 2017; 23: 1741-1750. doi: 10.12659/MSM.900296.
Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncology Letters 2016; 12; 4061-4067. doi: 10.3892/ol.2016.5127.
Zhao N, Wang R, Zhou L, Zhu Y, Gong J, Zhuang SM. MicroRNA-26b suppresses the NF signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Molecular Cancer 2014; 13;35. http://www.molecular-cancer.com/content/13/1/35.
Lv T, Jiang L, Kong L, Yang J. MicroRNA-29c-3p acts as a tumor suppressor gene and inhibits tumor progression in hepatocellular carcinoma by targeting TRIM31. Oncology Reports 2020; 43: 953-964.
Ming M, Ying M, Ling M. miRNA-125a-5p inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting TP53 regulated inhibitor of apoptosis 1 and Bcl-2-like-2 protein. Experimental and Therapeutic Medicine 2019; 18: 1196-1202.
Wang X, Zeng J, Wang L, Zhang X, Liu Z, Zhang H, et al. Overexpression of microRNA-133b is associated with the increased survival of patients with hepatocellular carcinoma after curative hepatectomy: Involvement of the EGFR/PI3K/Akt/mTOR signaling pathway. Oncology Reports 2017; 38: 141-150. doi: 10.3892/or.2017.5699.
Liang H, Sun H, Yang J, Yi C. miR-145-5p reduces proliferation and migration of hepatocellular carcinoma by targeting KLF5. Molecular Medicine Reports 2018; 17: 8332-8338. doi: 10.3892/mmr.2018.8880.
Ruan T, He X, Yu J, Hang Z. MicroRNA-186 targets Yes-associated protein 1 to inhibit Hippo signaling and tumorigenesis in hepatocellular carcinoma. Oncology Reports 2016; 11: 2941-2945. doi: 10.3892/ol.2016.4312.
Yu S, Jing L, Yin XR, Wang MC, Chen YM, Guo Y, et al. MiR-195 suppresses the metastasis and epithelial–mesenchymal transition of hepatocellular carcinoma by inhibiting YAP. Oncotarget 2017; 8(5): 99757-99771.
Wang J, Yao G, Zhang B, Zhao Z, Fan Y. Interaction between miR-206 and lncRNA MALAT1 in regulating viability and invasion in hepatocellular carcinoma. Oncology Letters 2024; 27(5). doi: 10.3892/ol.2023.14138.
Liu FY, Zhou SJ, Deng YI, Zhang ZY, Wu ZB, Huang ZY, et al. MiR-216b is involved in pathogenesis and progression of hepatocellular carcinoma through HBx-miR-216b-IGF2BP2 signaling pathway. Cell Death & Disease 2015; 6. http://dx.doi.org/10.1038/cddis.2015.46.
Zhang M, Li M, Zhang Z, Liu N. miR-217 suppresses proliferation, migration, and invasion promoting apoptosis via targeting MTDH in hepatocellular carcinoma. Oncology Letters 2017; 37; 1772-1778. doi: 10.3892/or.2017.5401.
Wan L, Yuan X, Liu M, Xue B. MiRNA-223-3p regulates NLRP3 to promote apoptosis and inhbibit proliferation of hep3B cells. Experimental and Therapeutic Medicine 2018; 15: 2429-2435.
Ren Q, Xiao X, Leng X, Zhang Q, Zhou X, Ren Y, et al. MicroRNA-361-5p induces hepatocellular carcinoma cell apoptosis and enhances drug sensitivity by targeting MAP3K9. Experimental and Therapeutic Medicine 2021; 21: 574. doi: 10.3892/etm.2021.10006.
Yu L, Ding GF, He C, Sun L, Jiang YF, Zhu L. MicroRNA-424 is down-regulated in hepatocellular carcinoma and suppresses cell migration and invasion through c-Myb. PLos ONE 2014; 9(14). doi:10.1371/journal.pone.0091661.
Liu X, Zhang A, Xiang J, Lv Y, Zhang X. miR-451 acts as a suppressor of angiogenesis in hepatocellular carcinoma by targeting the IL-6R-STAT3 pathway. Oncology Reports 2016; 36: 1385-1392. doi: 10.3892/or.2016.4971.
Nomura K, Kitanaka, A, Iwama H, Tani J, Nomura T, Nakahara M, Ohura K, Tadokora T, et al. Association between microRNA-527 and glycan-3 in hepatocellular carcinoma. Oncology Letters 2021; 21: 229. doi: 1-.3892/o1.2021.12490.
Guo L, Li B, Miao M, Yang J, Ji J. MicroRNA-663b targets GAB2 to restrict cell proliferation and invasion in hepatocellular carcinoma. Molecular Medicine Reports 2019; 19: 2913-2920. doi: 10.3892/mmr.2019.9934.
Bo W, Hu Y, Feng X, Zhang H, Tian L, Liu A. The tumour suppressor role of miR-4782-3p in hepatocellular carcinoma. Oncology Reports 2016; 35: 2107-2112. doi: 10.3892/or.2016.4568.
Gong, A., Luo, X., Tan, Y., Chen, H., & Luo, G. High expression of C10orf91 and LINC01224 in hepatocellular carcinoma and poor prognosis. Am J Transl Res 2022; 14(4): 2567-2579.
Chang RM, Xiao S, Lei X, Yang H, Fang F, Yang LY. miRNA-487a promotes proliferation and metastasis in hepatocellular carcinoma. Clin Cancer Res 2017; 23(10), 2593-2604.
Hassan M, Elzallat M, Aboushousha T, Elhusseny Y, El Ahwany E. MicroRNA-122 mimic/microRNA-221 inhibitor combination as a novel therapeutic tool against hepatocellular carcinoma. Non-coding RNA Research 2023; 8: 126-134. doi: https://doi.org/10.1016/j.ncrna.2022.11.005.
Zhang Y, Zhu Z, Huang S, Zhao Q, Huang C, Tang Y, et al. lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCP4. Cancer Cell Int 2019; 19(198): 1-13.
Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, et al. MicroRNA (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Targeted Oncology 2020; 15: 261-278.
Smolarz B, Durczynski A, Romanowicz H, Szyllo K, Hogendorf P. miRNAs in cancer (Review of literature). Int. J. Mol. Sci 2022; 23(2805): 1-18.
Kong CQ, Chen XC, Qiu GH, Liang JC, Wang D, Liu XY, et al. Effects of miRNA-140 on the growth and clinical prognosis of SMMC-7721 hepatocellular carcinoma cell line. BioMed Research International 2021; 131: 1-14.
Wu YH, Zhou JM, Shen XH, Chen WX, Ai X, Leng C, et al. MicroRNA-188-5p inhibits hepatocellular carcinoma proliferation and migration by targeting forkhead box N2. BMC Cancer 2023; 23(511): 1-13.
Fu Z, Wang L, Li S, Chen F, Yeung KW, Shi C. MicroRNA as an important target for anticancer drug development. Front. Pharmacol 2021; 12: 1-18.
Bao L, Zhang M, Han S, Zhan Y, Guo W, Teng F, et al. MicroRNA-500a promotes the progression of hepatocellular carcinoma by post-transcriptionally targeting BID. Cell Physiol Biochem 2018; 47: 2046-2055.
Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncology Letters 2016; 12: 4061-4067.
He H, Wang Y, Ye P, Yi D, Cheng Y, Tang H, et al. Long noncoding RNA ZFPM2-AS1 acts as a miRNA sponge and promotes cell invasion through regulation of miR-139/GDF10 in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research 2020; 39(159): 1-17.