A Comparative Study About the Inhibitory Effect of Allium Sativum and Anredera Cordifolia (Ten.) Steenis on Pseudomonas Aeruginosa Bacterial Growth, Motility, and Biofilm Formation, in Vitro Study
Main Article Content
Abstract
Introduction: Allium sativum (garlic) and Anredera cordifolia (Ten.) Steenis (Madeira vine) have shown antimicrobial activities against many pathogen species, although the results varied. We aimed to compare the anti-bacterial and anti-biofilm activity of Allium sativum and Anredera cordifolia against Pseudomonas aeruginosa, which can cause nosocomial infection by colonizing medical device surfaces and forming biofilm. Methods: The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of garlic extract against P. aeruginosa ATCC 9027. The effect of the extracts on biofilm formation was tested by using static microtiter plate biofilm assay. Allium and Anredera cordifolia leaf extracts with various concentrations were incubated in LB medium then stimulated with P. aeruginosa ATCC 9027 suspensions. Crystal violet staining was performed prior to optical density measurement on a microplate reader at 595 nm. The bacterial motility tests were performed on Nutrient Agar (NA) and BBL motility test medium. Result: Allium sativum and Anredera cordifolia leaf extracts inhibited the growth of P. aeruginosa with MIC values of 1250 and 2500 μg/ml, respectively. Both extracts inhibited bacterial adherence with doses as low as 62.5 μg/ml of Allium sativum and 125 μg/ml of Anredera cordifolia. Scanning electron microscopy (SEM) clarified the inhibition of both extracts on bacterial attachment. In a similar trend, both extracts inhibited bacterial swimming and swarming motilities. Conclusion: This study suggests that both extracts could inhibit bacterial biofilm formation and bacterial cell motility in the optimal concentration of 500 µg/ml.
Downloads
Article Details
References
Diggle SP, Whiteley M. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology (Reading). 2020;166(1):30-3. doi: 10.1099/mic.0.000860.
Williams BJ, Dehnbostel J, Blackwell TS. Pseudomonas aeruginosa: host defence in lung diseases. Respirology. 2010;15(7):1037-56. doi: 10.1111/j.1440-1843.2010.01819x.
Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000;2(9):1051-60. doi: 10.1016/s1286-4579(00)01259-4.
Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67(3):159-73. doi: 10.1111/2049-632X.12033.
Weiner LM, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–301. doi: 10.1017/ice. 2016.1.
Parker CM, et al. Ventilator-associated pneumonia caused by multidrug-resistant organisms or Pseudomonas aeruginosa: prevalence, incidence, risk factors, and outcomes. J Crit Care. 2008;23(1):18–26. doi: 10.1016/j.jcrc.2008.02.00174.
Hojat LS, Wilson BM, Satlin MJ, Perez F, Mojica MF, Singer ME, Bonomo RA, Epstein LH. 14-Year Epidemiologic study of Pseudomonas aeruginosa bloodstream infection incidence and resistance in the Veterans Health Administration system, 2009–2022. JAC-Antimicrobial Resistance. 2024 Apr;6(2):dlae031. doi: 10.1093/jacamr/dlae031.
Palavutitotai N, Jitmuang A, Tongsai S, Kiratisin P, Angkasekwinai N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PloS one. 2018 Feb 22;13(2):e0193431.
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: infections, animal modeling, and therapeutics. Cells. 2023 Jan 3;12(1):199. doi: 10.3390/cells12010199.
Alatoom, A., Alattas, M., Alraddadi, B. et al. Antimicrobial Resistance Profiles of Pseudomonas aeruginosa in the Arabian Gulf Region Over a 12-Year Period (2010–2021). J Epidemiol Glob Health 14, 529–548 (2024). Doi: 10.1007/s44197-024-00191.
Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000;3(4):247-55. doi: 10.1054/drup.2000.0152.
Park SY, Park HJ, Moon SM, Park KH, Chong YP, Kim MN, et al. Impact of adequate empirical combination therapy on mortality from bacteremic Pseudomonas aeruginosa pneumonia. BMC Infect Dis. 2012;12:308. doi: 10.1186/1471-2334-12-308
Bachrach G, Jamil A, Naor R, Tal G, Ludmer Z, Steinberg D. Garlic allicin as a potential agent for controlling oral pathogens. J Med Food. 2011;14(11):1338-43. doi: 10.1089/jmf.2010.0165.
Tessema B, Mulu A, Kassu A, Yismaw G. An in vitro assessment of the antibacterial effect of garlic (Allium sativum) on bacterial isolates from wound infections. Ethiop Med J. 2006;44(4):385-9. PMID: 17370439.
Suliska N, Suryani, Insanu M, Sukandar EY. Antihypertensive Activity of Combination of Anredera cordifolia (Ten.) V. Steenis and Sonchus arvensis L. Leaves on Epinephrine Induced Male Wistar Rat. J Adv Pharm Technol Res. 2021;12(4):384-8. doi: 10.4103/japtr.japtr_91_21.
Dwitiyanti D, Harahap Y, Elya B, Bahtiar A. Binahong (Anredera cordifolia (Tenore) Steen.) Leaf Extract Modulates Fatty Acids and Amino Acids to Lower Blood Glucose in High-Fat Diet-Induced Diabetes Mellitus Rats. Adv Pharmacol Pharm Sci. 2021;2021:8869571. doi: 10.1155/2021/8869571.
Kismiati S, Wahyuni HI, Muryani R, Sunarti D, Sumarsih S. Addition of binahong (Anredera cordifolia) leaf powder to diets to produce eggs with low cholesterol. Vet World. 2020;13(3):604-8. doi: 10.14202/vetworld.2020.604-608.
Yuniarti WM, Lukiswanto BS. Effects of herbal ointment containing the leaf extracts of Madeira vine (Anredera cordifolia (Ten.) Steenis) for burn wound healing process on albino rats. Vet World. 2017;10(7):808-13. doi: 10.14202/vetworld.2017.808-813.
Yuan G, Guan Y, Yi H, Lai S, Sun Y, Cao S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci Rep. 2021;11(1):10471. doi: 10.1038/s41598-021-90035-7.
Jacob MC, Favre M, Bensa JC. Membrane cell permeabilization with saponin and multiparametric analysis by flow cytometry. Cytometry. 1991;12(6):550-8. doi: 10.1002/cyto.990120612.
Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics (Basel). 2021;10(3). doi: 10.3390/antibiotics10030318.
Hutomo, S.; Putri, D.U.; Welviyanda, B.C.; Susilowati, H. Inhibition effect of garlic (Allium sativum) extract on Streptococcus sanguinis biofilm formation involving bacterial motility mechanism. Malaysian Journal of Medicine and Health Sciences. 2021;17(2):169-74. https://medic.upm.edu.my/upload/dokumen/2021040613134123_MJMHS_0582.pdf
Raja AF, Ali F, Khan IA, Sha.wl AS, Arora DS. Acetyl-11-keto-beta-boswellic acid (AKBA); targeting oral cavity pathogens. BMC Res Notes. 2011;4:406. doi: 10.1186/1756-0500-4-406
Inoue T, Shingaki R, Fukui K. Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids. FEMS Microbiol Lett. 2008;281(1):81-6. doi: 10.1111/j.1574-6968.2008.01089.x.
Naganawa R, Iwata N, Ishikawa K, Fukuda H, Fujino T, Suzuki A. Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic. Appl Environ Microbiol. 1996;62(11):4238-42. doi: 10.1128/aem.62.11.4238-4242.1996.
Fujisawa H, Watanabe K, Suma K, Origuchi K, Matsufuji H, Seki T, et al. Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds. Biosci Biotechnol Biochem. 2009;73(9):1948-55. doi: 10.1271/bbb.90096.
Yoshida H, Iwata N, Katsuzaki H, Naganawa R, Ishikawa K, Fukuda H, et al. Antimicrobial activity of a compound isolated from an oil-macerated garlic extract. Biosci Biotechnol Biochem. 1998;62(5):1014-7. doi: 10.1271/bbb.62.1014.
Canizares P, Gracia I, Gomez LA, Martin de Argila C, Boixeda D, Garcia A, et al. Allyl-thiosulfinates, the bacteriostatic compounds of garlic against Helicobacter pylori. Biotechnol Prog. 2004;20(1):397-401. doi:10.1021/bp034143b
Hannan A, Ikram Ullah M, Usman M, Hussain S, Absar M, Javed K. Anti-mycobacterial activity of garlic (Allium sativum) against multi-drug resistant and non-multi-drug resistant mycobacterium tuberculosis. Pak J Pharm Sci. 2011;24(1):81-5. PMID: 21190924.
Karuppiah P, Rajaram S. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pac J Trop Biomed. 2012;2(8):597-601. doi: 10.1016/S2221-1691(12)60104-X.
Snowden R, Harrington H, Morrill K, Jeane L, Garrity J, Orian M, et al. A comparison of the anti-Staphylococcus aureus activity of extracts from commonly used medicinal plants. J Altern Complement Med. 2014;20(5):375-82. doi: 10.1089/acm.2013.0036.
Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, et al. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol. 2005;187(5):1799-814. doi: 10.1128/JB.187.5.1799-1814.2005.
Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calum H, Hentzer M, et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology (Reading). 2005;151(Pt 12):3873-80 doi: 10.1099/mic.0.27955-0.
Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes and infection. 1999 Feb 1;1(2):125-9. doi: 10.1016/s1286-4579(99)80003-3.
Ulanowska K, Majchrzyk A, Moskot M, Jakóbkiewicz-Banecka J, Węgrzyn G. Assessment of antibacterial effects of flavonoids by estimation of generation times in liquid bacterial cultures. Biologia. 2007;62(2): 132-135. doi: 10.2478/s11756-007-0042-3.
Zahro L, Agustini R. Uji Afektivitas Antibakteri Ekstrak Kasar Saponin Jamur Tiram Putih (Pleurotus ostreatus) Terhadap Staphylococcus aureus dan Escherichia coli. UNESA J Chem. 2013;2(3):120–9.
Pandey A, Chauhan AS, Haware DJ, Negi PS. Proximate and mineral composition of Kadamba (Neolamarckia cadamba) fruit and its use in the development of nutraceutical enriched beverage. J Food Sci Technol [Internet]. 2018/08/24. 2018 Oct;55(10):4330–6. Available from: https://pubmed.ncbi.nlm.nih.gov/30228432.
Kaczmarek B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials-A Minireview. Mater (Basel, Switzerland) [Internet]. 2020 Jul 20;13(14):3224. Available from: https://pubmed.ncbi.nlm.nih.gov/32698426.
Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP, Dandekar AA. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc Natl Acad Sci U S A. 2019;116(14):7027-32. doi: 10.1073/pnas.1819796116.
Ranjbar-Omid M, Arzanlou M, Amani M, Shokri Al-Hashem SK, Amir Mozafari N, Peeri Doghaheh H. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro. FEMS Microbiol Lett. 2015;362(9). doi: 10.1093/femsle/fnv049.
Bodini SF, Manfredini S, Epp M, Valentini S, Santori F. Quorum sensing inhibition activity of garlic extract and p-coumaric acid. Lett Appl Microbiol. 2009;49(5):551-5. doi: 10.1111/j.1472-765X.2009.02704.x.
Lihua L, Jianhuit W, Jialini Y, Yayin L, Guanxin L. Effects of allicin on the formation of Pseudomonas aeruginosa biofinm and the production of quorum-sensing controlled virulence factors. Pol J Microbiol. 2013;62(3):243-51. PMID: 24459829.
Li WR, Ma YK, Shi QS, Xie XB, Sun TL, Peng H, et al. Diallyl disulfide from garlic oil inhibits Pseudomonas aeruginosa virulence factors by inactivating key quorum sensing genes. Appl Microbiol Biotechnol. 2018;102(17):7555-64. doi: 10.3389/fmicb.2018.03222.
Vadekeetil A, Saini H, Chhibber S, Harjai K. Exploiting the antivirulence efficacy of an ajoene-ciprofloxacin combination against Pseudomonas aeruginosa biofilm associated murine acute pyelonephritis. Biofouling. 2016;32(4):371-82. doi: 10.3389/fmicb.2018.03222.
Tan Y, Cheng Q, Yang H, Li H, Gong N, Liu D, et al. Effects of ALA-PDT on biofilm structure, virulence factor secretion, and QS in Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther. 2018;24:88-94. doi: 10.1016/j.pdpdt.2018.07.005.
Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020;21(22). doi: 10.3390/ijms21228671.
Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol. 2006;62(5):1264-77. doi: 10.1111/j.1365-2958.2006.05421.x.
Nolan LM, Cavaliere R, Turnbull L, Whitchurch CB. Extracellular ATP inhibits twitching motility-mediated biofilm expansion by Pseudomonas aeruginosa. BMC Microbiol. 2015;15:55. doi: 10.1186/s12866-015-0392-x.
Alba TM, Tessaro E, Sobottka AM. Seasonal effect on phenolic content and antioxidant activity of young, mature and senescent leaves from Anredera cordifolia (Ten.) Steenis (Basellaceae). Braz J Biol. 2022;84:e254174. doi: 10.1590/1519-6984.254174.
Ulanowska K, Tkaczyk A, Konopa G, Wegrzyn G. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch Microbiol. 2006;184(5):271-8. doi: 10.1007/s00203-005-0063-7.
Dabbaghi AK, K; Ramazani, A; Zohuriaan-Mehr, M; Jahandideh A. Synthesis of bio-based internal and external cross-linkers based on tannic acid for preparation of antibacterial superabsorbents. Polymers for Advanced Technologies. 2019;30(11):2894-905. doi:10.1002/pat.4722.
Belhaoues SA, S; Bensouilah, M. Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. South African Journal of Botany. 2020;131:200-5. doi:10.1016/j.sajb.2020.02.018.
Alidoust FA, Rasti B, Zamani H, Mirpour M, Mirzaie A. Rutin-coated zinc oxide nanoparticles: a promising antivirulence formulation against pathogenic bacteria. World Journal of Microbiology and Biotechnology. 2024 Jun;40(6):184. doi: 10.1007/s11274-024-03984-2.
Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem. 2020 Sep;44(9):e13394. doi: 10.1111/jfbc.13394. Epub 2020 Jul 20. PMID: 32691460.