Curcumin Improved Superoxide Dismutase Concentration but Failed to Decrease Malondialdehyde Concentration After a Series of Estradiol Benzoate Injection in Mice
Main Article Content
Abstract
Introduction: Estradiol benzoate is widely used to mimic dysmenorrhea in mice, inducing oxidative stress and inflammation during menstruation. Since curcumin is a potent natural antioxidant, it presumably decreases dysmenorrhea and oxidative stress during menstruation. This study aims to investigate the effect of curcumin on superoxide dismutase (SOD) and malondialdehyde (MDA) concentration in estradiol benzoate-induced dysmenorrhea in mice. Methods: Forty mice were randomly grouped into five groups. The first three groups were treated with curcumin twice a day with 100 mg/kg (Dys+Cur100), 200 mg/kg (Dys+Cur200), and 400 mg/kg (Dys+Cur400) in corn oil. The next two groups were treated with either 100 mg/kg ibuprofen (Dys+Ibu) or corn oil as placebo (Dys). Oxytocin was used to induce a writhing response to pain in mice. On day 11, blood serum was taken for examination of SOD and MDA concentration in mice. Results: Significant differences were observed between the SOD concentration in the Dys+Cur100 vs. Dys group (p < 0.05). The MDA concentration did not differ between groups (p > 0.05). Although the antioxidant effect of curcumin failed to lower the MDA concentration, it succeeded in elevating the SOD concentration in mice treated with 100 mg curcumin. Conclusion: The antioxidant activity of curcumin improved SOD levels but not MDA levels in dysmenorrhea-induced mice, highlighting the indirect effect of curcumin on dysmenorrhea treatment.
Downloads
Article Details
References
Ameade EPK, Amalba A, Mohammed BS. Prevalence of dysmenorrhea among University students in Northern Ghana; its impact and management strategies. BMC Womens Health. 2018;18(1):1–9. doi:10.1186/s12905-018-0532-1.
Azagew AW, Kassie DG, Walle TA. Prevalence of primary dysmenorrhea, its intensity, impact and associated factors among female students’ at Gondar town preparatory school, Northwest Ethiopia. BMC Womens Health. 2020;20(1):1–7. doi:10.1186/s12905-019-0873-4.
Bakhsh H, Algenaimi E, Aldhuwayhi R, AboWadaan M. Prevalence of dysmenorrhea among reproductive age group in Saudi Women. BMC Womens Health. 2022;22(1):1–14. doi:10.1186/s12905-022-01654-9.
Çinar GN, Akbayrak T, Gürşen C, Baran E, Üzelpasacı E, Nakip G, et al. Factors Related to Primary Dysmenorrhea in Turkish Women: a Multiple Multinomial Logistic Regression Analysis. Reprod Sci. 2021;28(2):381–92. doi:10.1007/s43032-020-00289-1.
Mammo M, Alemayehu M, Ambaw G. Prevalence of Primary Dysmenorrhea, Its Intensity and Associated Factors Among Female Students at High Schools of Wolaita Zone, Southern Ethiopia: Cross-Sectional Study Design. Int J Womens Health. 2022;14:1569–77. doi:10.2147/IJWH.S384275.
Hu Z, Tang L, Chen L, Kaminga AC, Xu H. Prevalence and Risk Factors Associated with Primary Dysmenorrhea among Chinese Female University Students: A Cross-sectional Study. J Pediatr Adolesc Gynecol. 2020;33(1):15–22. doi:10.1016/j.jpag.2019.09.004.
Mesele TT, Dheresa M, Oljira L, Wakwoya EB, Gemeda GM. Prevalence of Dysmenorrhea and Associated Factors Among Haramaya University Students, Eastern Ethiopia. Int J Womens Health. 2022;14:517–27. doi:10.2147/IJWH.S333447.
Ako TW, Obichemti ET, Florent FY, Pierre W. Primary Dysmenorrhea; Prevalence, Treatment Practices and Impact among High School Students in 2 Secondary Schools in Bafoussam. Open J Obstet Gynecol. 2022;12(08):731–59. doi:10.4236/ojog.2022.128064.
Fahimah, Margawati A, Fitranti DY. Hubungan Konsumsi Asam Lemak Omega-3, Aktivitas Fisik dan Persen Lemak Tubuh dengan Tingkat Dismenore Pada Remaja. J Nutr Coll. 2017;6(4):268–76. doi:10.14710/jnc.v6i4.18249.
Dewi YI, Suci WP, Erika. Prevalence of dysmenorrhea among female students at the University of Riau-Indonesia. Enfermería Clínica. 2021;31(4):605–8. doi: 10.1016/j.enfcli.2021.04.022.
Wang L, Yan Y, Qiu H, Xu D, Zhu J, Liu J, et al. Prevalence and Risk Factors of Primary Dysmenorrhea in Students: A Meta-Analysis. Value Heal. 2022;25(10):1678–84. doi:10.1016/j.jval.2022.03.023.
Hua Y, Duan J, Zhu Q, Wang Q. Study on method of oxytocin induced in vitro dysmenorrhea model in mouse. Chin Pharmacol Bull. 2008;24(489–493).
Hong F, He G, Zhang M, Yu B, Chai C. The Establishment of a Mouse Model of Recurrent Primary Dysmenorrhea. Int J Mol Sci. 2022;23(11):1–15. doi:10.3390/ijms23116128.
Yang L, Cao Z, Yu B, Chai C. An in vivo mouse model of primary dysmenorrheal. Exp Anim. 2015;64(3):295–303. doi:10.1538/expanim.14-0111.
Turhan N, Çelik H, Duvan CI, Onaran Y, Aydin M, Armutcu F. Investigation of oxidative balance in patients with dysmenorrhea by multiple serum markers. J Turkish Ger Gynecol Assoc. 2012;13(4):233–6. doi:10.5152/jtgga.2012.36.
Venkata Rao S, Ravi Kiran VS, Vijayasree M. Oxidative stress and antioxidant atatus in primary dysmenorrhea. J Clin Diagnostic Res. 2011;5(3):509–11. doi:10.7860/JCDR/2011/.1308.
Aksoy AN, Laloglu E, Ozkaya AL, Yilmaz EPT. Serum heme oxygenase-1 levels in patients with primary dysmenorrhea. Arch Gynecol Obstet. 2017;295(4):929–34. doi:10.1007/s00404-017-4312-1.
Orimadegun B, Awolude O, Agbedana E. Markers of lipid and protein peroxidation among Nigerian university students with dysmenorrhea. Niger J Clin Pract. 2019;22(2):174–80. doi:10.4103/njcp.njcp_279_18.
Mukhoirotin, Kurniawati, Fatmawati DA. Superoxide dismutase and malondialdehyde levels in adolescents with primary dysmenorrhea. J Crit Rev. 2020;7(14):100–2. doi:10.31838/jcr.07.14.16.
Wulandari A, Rodiyani, Sari RDP. Pengaruh Pemberian Ekstrak Kunyit ( Curcuma longa linn ) dalam Mengatasi Dismenorea [Effect of Tumeric Extract ( Curcuma longa linn ) for Overcoming Dysmenorrhoea]. Majority,. 2018;7(2):193–7.
Tapia E, Sánchez-Lozada LG, García-Niño WR, García E, Cerecedo A, García-Arroyo FE, et al. Curcumin prevents maleate-induced nephrotoxicity: Relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I. Free Radic Res. 2014;48(11):1342–54. doi:10.3109/10715762.2014.954109.
Pichardo E, Liborio-Kimura T, Caballero ME, Kandany VN, Mena L, Ferreira-Filho E, et al. ESCAPE pain trial - The effects of Curcumin in pain relief in women diagnosed with primary dysmenorrhea: A triple-blinded, placebo-controlled, phase II, randomized clinical trial protocol. Princ Pract Clin Res. 2020;6(2):25–32. doi:10.21801/ppcrj.2020.62.5.
Tabari NS, Kheirkhah M, Mojab F, Salehi M. An Investigation of the Effect of Curcumin (Turmeric) Capsule on the Severity and Duration of Dysmenorrhea in Students of Iran University of Medical Sciences. J Evol Med Dent Sci. 2020;9(46):3444–51. doi:10.14260/jemds/2020/755.
Wang YL, Ju B, Zhang YZ, Yin HL, Liu YJ, Wang SS, et al. Protective Effect of Curcumin Against Oxidative Stress-Induced Injury in Rats with Parkinson’s Disease Through the Wnt/β-Catenin Signaling Pathway. Cell Physiol Biochem. 2017;43(6):2226–41. doi:10.1159/000484302.
Jesuíno FW da R, Reis JP, Whitaker JCP, Campos A, Pastor MVD, Cechinel Filho V, et al. Effect of Synadenium grantii and its isolated compound on dysmenorrhea behavior model in mice. Inflammopharmacology. 2019;27(3):613–20. doi:10.1007/s10787-018-0501-1.
Ma B, Yang S, Tan T, Li J, Zhang X, Ouyang H, et al. An integrated study of metabolomics and transcriptomics to reveal the anti-primary dysmenorrhea mechanism of Akebiae Fructus. J Ethnopharmacol. 2021;270:113763. doi:10.1016/j.jep.2020.113763.
Li J, Liu X, Jiang M, Xu Y, Wang C, Hu Y, et al. Wenjing Zhitong recipe exhibits potential anti-primary dysmenorrhea properties by inhibiting COX2 and PKC signaling pathway in rats induced by estradiol benzoate and oxytocin. J Tradit Chinese Med Sci. 2023;10(3):296–309. doi:10.1016/j.jtcms.2023.06.012.
Peng Y, Zheng X, Fan Z, Zhou H, Zhu X, Wang G, et al. Paeonol alleviates primary dysmenorrhea in mice via activating CB2R in the uterus. Phytomedicine. 2020;68:153151. doi:10.1016/j.phymed.2019.153151.
Liu C, Li X, Zhou C, Liang Y, Zhang X, Liu Y, et al. Effects of ginger-partitioned moxibustion on the expression levels of PGF2α, E2, P, and mRNAs of PGF2αR and E2R in rats with primary dysmenorrhea due to cold-dampness stagnation. J Acupunct Tuina Sci. 2022;20(2):104–10. doi:10.1007/s11726-022-1301-0.
Yu L, Yi-qin W, Ling-yu C, Bin-qian M, Xiao-xian W, Yao X, et al. Effect of electroacupuncture on NF-κB and NLRP3 rats with primary dysmenorrhea inflammasome in uterine tissues of rats with primary dysmenorrhea. J Acupunct Tuina Sci. 2019;17(4):215–22. doi:10.1007/s11726-019-1117-8.
Li X hua, Sun X xue, Liang Y lei, Gao F, Du X yi, Chen Y, et al. Effects of moxibustion at different times on prostaglandin and vasopressin levels in uterine tissues of rats with dysmenorrhea due to cold-dampness retention. J Acupunct Tuina Sci. 2017;15(4):250–6. doi: 10.1007/s11726-017-1009-8.
Dahlan MS. Statistik Untuk Kedokteran dan Kesehatan: Deskripstif, Bivariat, dan Multivariat Dilengkapi Aplikasi Menggunakan SPSS. 6th ed. Jakarta: Epidemiologi Indonesia; 2014.
Smith JC. A Review of Strain and Sex Differences in Response to Pain and Analgesia in Mice. Comp Med. 2019;69(6):490–500. doi: 10.30802/AALAS-CM-19-000066.
Xie Z, Feng J, Cai T, McCarthy R, Eschbach MD, Wang Y, et al. Estrogen metabolites increase nociceptor hyperactivity in a mouse model of uterine pain. JCI Insight. 2022;7(10):1–18. doi: 10.1172/jci.insight.149107.
Harel Z. Dysmenorrhea in Adolescents and Young Adults: An Update on Pharmacological Treatments and Management Strategies. Expert Opin Pharmacother. 2012;13(15):2157–70. doi:10.1517/14656566.2012.725045.
Yang X, Tian Y, Liu J, Kou Y, Xie Y, Wang S, et al. Peony Pollen Protects against Primary Dysmenorrhea in Mice by Inhibiting Inflammatory Response and Regulating the COX2/PGE2 Pathway. Int J Mol Sci. 2023;24(24):1–15. doi:10.3390/ijms242417245.
Dixit A, Pandey P, Dhasmana D. In Vivo Effects of Nonselective, Partially Selective, and Selective Non Steroidal Anti‑Inflammatory Drugs on Lipid Peroxidation and Antioxidant Enzymes in Patients with Rheumatoid Arthritis: A Clinical Study. Int J Appl Basic Med Res. 2020;10(3):167–72. doi:10.4103/ijabmr.IJABMR.
Dhabi JK, Solanki JK, Mehta A. Antiatherosclerotic Activity of Ibuprofen, a Non-Selective COX Inhibitor - An Animal Study. Indian Joirnal Exp Biol. 2008;46:476–81.
Ngo V, Duennwald ML. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants. 2022;11(12):1–27. doi:10.3390/antiox11122345.
Panova IG, Tatikolov AS. Endogenous and Exogenous Antioxidants as Agents Preventing the Negative Effects of Contrast Media (Contrast-Induced Nephropathy). Pharmaceuticals. 2023;16(8):1–27. doi:10.3390/ph16081077.
Purwanto B. Mekanisme Kerja Curcumin dalam Mencegah Kerusakan Otot Rangka Mencit yang Melakukan Aktivitas Eksentrik Sesaat. Universitas Airlangga Surabaya; 2014.
Sahebkar A, Serbanc MC, Ursoniuc S, Banach M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods. 2015;18:898–909. doi:10.1016/j.jff.2015.01.005.
Hatipoglu D, Keskin E. The effect of curcumin on some cytokines, antioxidants and liver function tests in rats induced by Aflatoxin B1. Heliyon. 2022;8(7):e09890. doi:10.1016/j.heliyon.2022.e09890
Kwiecien S, Jasnos K, Magierowski M, Sliwowski Z, Pajdo R, Brzozowski B, et al. Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress - induced gastric injury. J Physiol Pharmacol. 2014;65(5):613–22.
Kumaran S, Annam V, Hamsaveena. Age related changes in Malondialdehyde: Total Antioxidant Capacity Ratio - a Novel Marker of Oxidative Stress. Int J Pharma Biosci. 2010;1:1–6.
Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42(10):1634–50. doi:10.1016/j.biocel.2010.06.001.
Macotpet A, Suksawat F, Sukon P, Pimpakdee K, Pattarapanwichien E, Tangrassameeprasert R, et al. Oxidative stress in cancer-bearing dogs assessed by measuring serum malondialdehyde. BMC Vet Res. 2013;9(101):1–6. doi:10.1186/1746-6148-9-101.
Alizadeh M, Kheirouri S. Curcumin reduces malondialdehyde and improves antioxidants in humans with diseased conditions: A comprehensive meta-analysis of randomized controlled trials. Biomed. 2019;9(4):10–22. doi:10.1051/bmdcn/2019090423.
Purwanto B, Harjanto, Sudiana IK. Curcuminoid Prevents Protein Oxidation but not Lipid Peroxidation in Exercise Induced Muscle Damage Mouse. Procedia Chem. 2016;18(Mcls 2015):190–3. doi:10.1016/j.proche.2016.01.029.
Chenevard R, Hürlimann D, Béchir M, Enseleit F, Spieker L, Hermann M, et al. Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation. 2003;107(3):405–9. doi:10.1161/01.CIR.0000051361.69808.3A.