Antibacterial Susceptibilities of Moringa Oleifera Leaf Extract (MOLE) Against Gram-positive and Gram-negative Bacteria: A Preliminary Study

Main Article Content

admin admin
Nur Liyana Daud
Seri Narti Edayu Sarchio
Intan Nurzulaikha Abdul Zahid
Elysha Nur Ismail
Nurshahira Sulaiman
Mohd Nasir Mohd Desa
Suhaili Shamsi

Abstract

Introduction: The emergence of antibiotic-resistant bacteria, particularly Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), along with methicillin-susceptible S. aureus (MSSA) and Gram-negative Escherichia coli (E. coli), highlights the critical need for new antibacterial approaches. Herbal medicines, particularly Moringa oleifera leaf extract (MOLE), have demonstrated potential in combating bacterial infections. This study assesses the antibacterial efficacy of MOLE against MRSA, MSSA, and E. coli, with a focus on its effectiveness against both resistant and non-resistant bacterial strains. Methods: The antimicrobial susceptibility of ethanolic extract of MOLE was evaluated using the Kirby-Bauer disk diffusion method at five different concentrations (50-800 mg/mL) against MRSA, MSSA and E. coli. The phytochemical composition of MOLE was analysed using liquid chromatography-mass spectrometry (LC-MS). Results: MOLE demonstrated dose-dependent antibacterial susceptibility against both MSSA and MRSA. For MSSA, inhibition zones increased from 11.40 ± 0.65 mm at 100 mg/mL to 21.67 ± 0.75 mm at 800 mg/mL. MRSA exhibited similar dose-response, with inhibition zones expanding from 9.33 ± 0.65 mm at 100 mg/mL to 17.00 ± 0.65 mm at 800 mg/mL, comparable to the positive control, cefoxitin (18.75 ± 0.65 mm). Notably, MOLE exhibited no inhibitory effect against E. coli. LC-MS analysis identified bioactive compounds, including flavonoids, alkaloids, phenolics, and glucosinolates, known for their antibacterial properties. Conclusion: MOLE exhibited significant antimicrobial susceptibility against MRSA and MSSA, but was ineffective against E. coli. Future research should aim to elucidate the mechanisms of action of MOLE, evaluate its safety and efficacy in vivo, and explore potential synergistic interactions with conventional antibiotics.

Downloads

Download data is not yet available.

Article Details

How to Cite
admin, admin, Daud, N. L., Seri Narti Edayu Sarchio, Abdul Zahid, I. N., Elysha Nur Ismail, Sulaiman, N., Mohd Desa, M. N., & Suhaili Shamsi. (2026). Antibacterial Susceptibilities of Moringa Oleifera Leaf Extract (MOLE) Against Gram-positive and Gram-negative Bacteria: A Preliminary Study. Malaysian Journal of Medicine and Health Sciences, 22(1), 1476.1–1476.11. https://doi.org/10.47836/mjmhs.v22.i1.1476
Section
Original Articles

References

Ueda JM, Milho C, A. Heleno S, et al. Emerging Strategies to Combat Methicillin-resistant Staphylococcus aureus (MRSA): Natural Agents with High Potential. Curr Pharm Des. 2023;29:837–851. doi: 10.2174/1381612829666230410095155.

Hajhamed NM, Abdalla AE, Mohammed SI, et al. Current Status and Future Perspectives of Antibiotic Therapy for MRSA Infections. Preprints 2023 doi: 10.20944/preprints202304.0180.v1

WHO (2024) WHO bacterial priority pathogens list, 2024. Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024. Licence: CC BY NC-SA 3.0 IGO. https://www.who.int/publications/i/item/9789240093461.

Toyama Y, Hisata K, Kasai Y, Nakano S, Komatsu M, Shimizu T. Molecular epidemiology of meticillin-susceptible Staphylococcus aureus in the neonatal intensive care unit. J Hosp Infect. 2022;129:75-81. doi: 10.1016/j.jhin.2022.07.026.

Doua J, Geurtsen J, Rodriguez-Baño J, et al. Epidemiology, Clinical Features, and Antimicrobial Resistance of Invasive Escherichia Coli Disease in Patients Admitted in Tertiary Care Hospitals. Open Forum Infect Dis. 2023 https://doi.org/10.1093/OFID/OFAD026

Hansen S, Messer T, Mittelstet A, Berry ED, Bartelt-Hunt S, Abimbola O. Escherichia coli concentrations in waters of a reservoir system impacted by cattle and migratory waterfowl. Science of The Total Environment. 2020 705:135607

Puspandari N, Sunarno S, Febrianti T, et al. Extended spectrum beta-lactamase-producing Escherichia coli surveillance in the human, food chain, and environment sectors: Tricycle project (pilot) in Indonesia. One Health. 2021 13:100331

National Surveillance of Antibiotic Resistance Report 2023. Ministry of Health Malaysia. 2023. https://library.nih.gov.my/e-doc/imr/nsar-2023.pdf

Outani BA, Adamou H, Mahamadou A, Delmas P. Moringa (Moringa oleifera Lam): A Review on its Importance Worldwide. East African Scholars Journal of Agriculture and Life Sciences. 2023;6:112-120. doi:10.36349/easjals.2023.v06i07.01.

Kumar N, Sharma S. Pharmacology, Ethnopharmacology, and Phytochemistry of Medicinally Active Moringa oleifera: A Review. Nat Prod J. 2023;13(8):13–41. doi.org/10.2174/2210315513666230301094259.

Pathak S, Jain B. Phytochemical Analysis of Dried Moringa oleifera Leaf Powder. The Journal of Plant Science Research. 2023;39:177–184

Ojiako EN. Phytochemical analysis and antimicrobial screening of Moringa oleifera leaves extract. Int J Eng Sci. 2014;3(3): 32-35. Available from: https://www.theijes.com/papers/v3-i3/Version-1/F03310032035.pdf.

Wen Y, Li W, Su R, Yang M, Zhang N, Li X et al. Multi-Target Antibacterial Mechanism of Moringin From Moringa oleifera Seeds Against Listeria monocytogenes. Front Microbiol. 2022;13:925291. doi: 10.3389/fmicb.2022.925291.

Farooq B, Koul B. Comparative analysis of the antioxidant, antibacterial and plant growth promoting potential of five Indian varieties of Moringa oleifera L. South African Journal of Botany. 2020;129:47–55. doi: 10.1016/j.sajb.2018.12.014

van den Berg J, Kuipers S. The antibacterial action of Moringa oleifera: A systematic review. South African Journal of Botany. 2022;151:224–233. doi.org/10.1016/j.sajb.2022.09.034.

Ismail EN, Jantan I, Vidyadaran S, Jamal JA, Azmi N. Phyllanthus amarus prevents LPS-mediated BV2 microglial activation via MyD88 and NF-κB signaling pathways. BMC Complement Med Ther. 2022;20:202. doi: 10.1186/s12906-020-02961-0.

Akinduti PA, Emoh-Robinson V, Obamoh-Triumphant HF, Obafemi YD, Banjo TT. Antibacterial activities of plant leaf extracts against multi-antibiotic resistant Staphylococcus aureus associated with skin and soft tissue infections. BMC Complement Med Ther. 2022;22(47). doi.org/10.1186/s12906-022-03527-y

Bancessi A, Pinto MMF, Duarte E, Catarino L, Nazareth T. The antimicrobial properties of Moringa oleifera Lam. for water treatment: a systematic review. SN Appl Sci 2020;2:1–9. doi: 10.1007/s42452-020-2142-4.

Peter A.K., Paul A., Olabisi L., Clement A. Synergistic evaluation of Moringa oleifera, Hunteria umbellate and Azadirachta indica with antibiotics against Environmental MRSA isolates: An In-vitro Study. Am J BioScience. 2020;8(4):91-98. doi: 10.11648/j.ajbio.20200804.11

Sinaga, N.I., Hanafi, M., Yantih, N. Identification of chemical compounds and antibacterial activity of 96% ethanol extract from Moringa oleifera lam. Leaves against MRSA (methicillin resistant Staphylococcus aureus). Int j app pharm 2021;13, 111-114. doi: 10.22159/ijap.2021.v13s2.21

Keita K, Darkoh C, Okafor F. Secondary plant metabolites as potent drug candidates against antimicrobial-resistant pathogens. SN Appl Sci. 2022;4(8):209. doi: 10.1007/s42452-022-05084-y.

Rasheed N, Hussein N. Staphylococcus aureus: An Overview of Discovery, Characteristics, Epidemiology, Virulence Factors and Antimicrobial Sensitivity Short Title: Methicillin Resistant Staphylococcus aureus: An overview. 2021. Available from: https://www.semanticscholar.org/paper/Staphylococcus-aureus%3A-An-Overview-of-Discovery%2C-An-Rasheed-Hussein/e67c19662e27e2cd1168ed400af7e5c87c9e005c

Nikolic P, Mudgil P, Harman DG, Whitehall J. Untargeted lipidomic differences between clinical strains of methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Infect Dis (Lond). 2022;54(7):497-507. doi: 10.1080/23744235.2022.2049863.

Ham JS, Lee SG, Jeong SG, Oh MH, Kim DH, Lee T, et al. Powerful usage of phylogenetically diverse Staphylococcus aureus control strains for detecting multidrug resistance genes in transcriptomics studies. Mol Cells 2010;30:71–76. doi.org/10.1007/s10059-010-0090-3.

Swolana D, Kępa M, Kabała-Dzik A, Dzik R, Wojtyczka RD. Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin. Antibiotics (Basel). 2021;10(5):607. doi: 10.3390/antibiotics10050607

Bufe T, Hennig A, Klumpp J, Weiss A, Nieselt K, Schmidt H. Differential transcriptome analysis of enterohemorrhagic Escherichia coli strains reveals differences in response to plant-derived compounds. BMC Microbiol. 2019;19:212. https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-019-1578-4

Peixoto JRO, Silva GC, Costa RA, de Sousa Fontenelle J res L, Vieira GHF, Filho AAF, et al. In vitro antibacterial effect of aqueous and ethanolic Moringa leaf extracts. Asian Pac J Trop Med. 2011;4:201–204. doi: 10.1016/S1995-7645(11)60069-2

Falowo AB, Muchenje V, Hugo CJ, Charimba G. In vitro antimicrobial activities of Bidens pilosa and Moringa oleifera leaf extracts and their effects on ground beef quality during cold storage. CyTA - Journal of Food. 2016;14:541–546. doi: 10.1080/19476337.2016.116284724

Abdallah R, Mostafa NY, Kirrella GAK, Gaballah I, Imre K, Morar A, et al. Antimicrobial Effect of Moringa oleifera Leaves Extract on Foodborne Pathogens in Ground Beef. 2023;12:766. doi: 10.3390/foods12040766

Gauba A, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics 2023, Vol 12, Page 1590 12:159028. Essawi T, Srour M (2000) Screening of some Palestinian medicinal plants for antibacterial activity. J Ethnopharmacol. 20023;70:343–349. doi: 10.3390/antibiotics12111590

Essawi T, Srour M. Screening of some Palestinian medicinal plants for antibacterial activity. J Ethnopharmacol. 2000;70:343–349

Lin J, Opoku AR, Geheeb-Keller M, Hutchings AD, Terblanche SE, K. Jäger A, et al. J. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities. J Ethnopharmacol. 1999;68:267–274. doi: 10.1016/s0378-8741(99)00130-0

Li XN, Hua LX, Zhou TS, Wang KB, Wu YY, Emam M, et al. Cinnamic acid derivatives: inhibitory activity against Escherichia coli β-glucuronidase and structure–activity relationships. J Enzyme Inhib Med Chem. 2020;35:1372

Pratama SA, Widyawati T, Ichwan M, Wahyuni DD. Antibacterial Effect Combination of Moringa Leaf Extract (Moringa oleifera Lam.) and Amoxicillin against Staphylococcus aureus and Escherichia coli in Vitro. Jurnal Ilmu Kefarmasian Indonesia 2022;20:23

Gupta T, Kataria R, Sardana S. A Comprehensive Review on Current Perspectives of Flavonoids as Antimicrobial Agent. Curr Top Med Chem. 2022;22:425–434. doi: 10.2174/1568026622666220117104709

Karpiński, T.M.; Adamczak, A.; Ożarowski, M. Antibacterial activity of apigenin, luteolin, and their C-glucosides, in Proceedings of the 5th International Electronic Conference on Medicinal Chemistry. 2019. doi:10.3390/ECMC2019-06321

Kauffmann AC, Castro VS. Phenolic Compounds in Bacterial Inactivation: A Perspective from Brazil. Antibiotics. 2023;12(4):645. doi:10.3390/antibiotics12040645

Yin S, Rao G, Wang J, et al. Roemerine Improves the Survival Rate of Septicemic BALB/c Mice by Increasing the Cell Membrane Permeability of Staphylococcus aureus. PLoS One. 2015;10(11):e0143863. doi:10.1371/journal.pone.0143863

Liu K, Hong B, Wang S, Lou F, You Y, Hu R, Shafqat A, Fan H, Tong Y. Pharmacological Activity of Cepharanthine. Molecules. 2023;28:5019. doi: 10.3390/molecules28135019

Mesleh MF, Rajaratnam P, Conrad M, et al. Targeting Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase Activity. Chem Biol Drug Des. 2016;87:190–199. doi: 10.1111/cbdd.12662

Glenz R, Kaiping A, Göpfert D, Weber H, Lambour B, Sylvester M, et al. The major plant sphingolipid long chain base phytosphingosine inhibits growth of bacterial and fungal plant pathogens. Scientific Reports. 2022;12:1–9. doi: 10.1038/s41598-022-05083-4

Wang G, Dong W, Lu H, et al. Enniatin A1, A Natural Compound with Bactericidal Activity against Mycobacterium tuberculosis In Vitro. Molecules. 2019;25(1):38. doi:10.3390/molecules25010038

Lobiuc A, Pavăl NE, Mangalagiu II, Gheorghiță R, Teliban GC, Amăriucăi-Mantu D, et al. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules. 2023;28:1114. doi: 10.3390/molecules28031114

Pervaiz A, Khan R, Anwar F, Mushtaq G, A. Kamal M, Khan H. Alkaloids: An Emerging Antibacterial Modality Against Methicillin Resistant Staphylococcus aureus. Curr Pharm Des. 2016;22:4420–4429. doi: 10.2174/1381612822999160629115627