Application of HRM Analysis in Detection of PDGFRA Exon 10 Polymorphism in CML Patients with Imatinib Resistance

Main Article Content

Nur Sabrina Abd Rashid
Sarina Sulong
Azlan Husin
Rosline Hassan
Mohamad Ros Sidek
Nazihah Mohd Yunus

Abstract

Introduction: Imatinib mesylate has been widely used as a standard treatment for chronic myeloid leukemia (CML). It acts as aselective competitive inhibitor of the BCR-ABL tyrosine kinase. Despite the excellent efficacy on CML treatment, some patientsdeveloped resistance to the treatment. Mutation in the PDGFRA may be one of the factors involved in the mechanism of resistancethat affects the response to imatinib. The mutational status of PDGFRA is highly relevant for prognosis and treatment prediction inCML patients. Thus, this study is intended to establish and validate a High Resolution Melting (HRM) analysis for PDGFRA exon 10c.1432 T>C polymorphism in CML patients. Methods: High resolution melting (HRM) analysis was used to identify the c.1432 T > Cpolymorphism in PDGFRA exon 10 (n =86; response = 43; resistance = 43). The results from HRM analysis were compared andvalidated with Sanger sequencing. The association between the polymorphism and treatment response was assessed by statistical analysis using binomial logistic regression analysis. Results: HRM analyses showed two different melt curves. One curve followed theshape of the reference, homozygous wild type (TT) and the other curve showed a different melt- ing profile than the reference with theTC genotype (heterozygous variant). The results revealed that heterozygous variant (TC) genotype showed a high risk of acquiringresistance with an OR of 3.795; 95% CI: 1.502-9.591, with a statistically significant association, p = 0.005. HRM analysis alsoshowed 100% sensitivity and specificity in the detection of PDGFRA exon 10. Conclusion: The HRM analysis of PDGFRA exon 10c.1432 T>C was successfully established. The exon 10 c.1432 T>C polymorphism shows a higher risk for the development ofresistance toward imatinib treatment.

Downloads

Download data is not yet available.

Article Details

How to Cite
Abd Rashid, N. S., Sulong, S., Husin, A., Hassan, R., Sidek, M. R., & Mohd Yunus, N. (2022). Application of HRM Analysis in Detection of PDGFRA Exon 10 Polymorphism in CML Patients with Imatinib Resistance. Malaysian Journal of Medicine and Health Sciences, 18(5), 130–137. https://doi.org/10.47836/mjmhs18.5.18
Section
Original Articles

References

Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: a cancer journal for clinicians. 2010;60(5):277-300. doi: 10.3322/caac.20073

Hasford J, Baccarani M, Hoffmann V, Guilhot J, Saussele S, Rosti G, et al. Predicting complete cytogenetic response and subsequent progression- free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood. 2011:blood-2010-12-319038. doi: 10.1182/ blood-2010-12-319038

Ross D, Branford S, Seymour J, Schwarer A, Arthur C, Bartley P, et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia. 2010;24(10):1719. doi: 10.1038/ leu.2010.185

Melo JV, Chuah C. Resistance to imatinib mesylate in chronic myeloid leukaemia. Cancer letters. 2007;249(2):121-32. doi: 10.1016/j.canlet.2006.07.010

Milojkovic D, Apperley J. Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clinical Cancer Research. 2009;15(24):7519-27. doi: 10.1158/1078-0432.CCR-09-1068

Chaffin JM, Savage NM. Myeloid and Lymphoid Neoplasms with Eosinophilia and Abnormalities of PDGFRA, PDGFRB, FGFR1, or t (8; 9)(p22; p24. 1);

PCM1-JAK2. In Precision Molecular Pathology of Myeloid Neoplasms 2018 (pp. 311-341). Springer, Cham. doi: 10.1007/978-3-319-62146-3_16

Heldin C-H, Lennartsson J. Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Cold Spring Harbor perspectives in biology. 2013;5(8):a009100. doi: 10.1101/cshperspect.a009100.

Mosselman S, Looijenga L, Gillis A, Van Rooijen M, Kraft H, Van Zoelen E, et al. Aberrant platelet- derived growth factor alpha-receptor transcript as a diagnostic marker for early human germ cell tumors of the adult testis. Proceedings of the National Academy of Sciences. 1996;93(7):2884-8. doi: 10.1073/pnas.93.7.2884

Kawagishi J, Kumabe T, Yoshimoto T, Yamamoto T. Structure, organization, and transcription units of the human α-platelet-derived growth factor receptor gene, PDGFRA. Genomics. 1995;30(2):224-32. doi: 10.1006/geno.1995.9883.

Demoulin J-B, Montano-Almendras CP. Platelet- derived growth factors and their receptors in normal and malignant hematopoiesis. American journal of blood research. 2012;2(1):44. PMID: 22432087

Zhang Y, Rowley JD. Chronic myeloid leukemia: current perspectives. Clinics in laboratory medicine. 2011;31(4):687-98. doi: 10.1016/j. cll.2011.08.012

Liang L, Yan XE, Yin Y, Yun CH. Structural and biochemical studies of the PDGFRA kinase domain. Biochemical and biophysical research communications. 2016 Sep 2;477(4):667-72. doi: 10.1016/j.bbrc.2016.06.117

Heinrich MC, Corless CL, Demetri GD, Blanke CD, Von Mehren M, Joensuu H, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. Journal of clinical oncology. 2003;21(23):4342-9. doi: 10.1200/ JCO.2003.04.190

Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A, Davis A, Zhu XJ, Schmidt-Kittler O, Wilson D, Wilson K, DiPietro L. A precision therapy against cancers driven by KIT/PDGFRA mutations. Science translational medicine. 2017 Nov 1;9(414). doi: 10.1126/scitranslmed.aao1690

Grunewald S, Klug LR, Mühlenberg T, Lategahn J, Falkenhorst J, Town A, Ehrt C, Wardelmann E, Hartmann W, Schildhaus HU, Treckmann J. Resistance to avapritinib in PDGFRA-driven GIST is caused by secondary mutations in the PDGFRA kinase domain. Cancer discovery. 2021 Jan 1;11(1):108-25. doi: 10.1158/2159-8290.CD-20-0487

Taylor CF. Mutation scanning using high- resolution melting. Portland Press Limited; 2009. doi:10.1042/BST0370433

Tindall EA, Petersen DC, Woodbridge P, Schipany K, Hayes VM. Assessing high-resolution melt curve analysis for accurate detection of gene variants in complex DNA fragments. Human mutation. 2009;30(6):876-83. doi: 10.1002/humu.20919

Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, et al. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clinical chemistry. 2004;50(7):1156-

doi: 10.1373/clinchem.2004.032136

Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical chemistry. 2003;49(6):853-60. doi: 10.1373/49.6.853

Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. New England Journal of Medicine. 2003;348(13):1201-14. doi: 10.1056/ NEJMoa025217

Martinho O, Longatto-Filho A, Lambros M, Martins A, Pinheiro C, Silva A, et al. Expression, mutation and copy number analysis of platelet-derived growth factor receptor A (PDGFRA) and its ligand PDGFA in gliomas. British journal of cancer. 2009;101(6):973. doi: 10.1038/sj.bjc.6605225

Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872-84. doi: 10.1182/blood-2013-05-501569

Parikh R, Mathai A, Parikh S, Sekhar GC, Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian journal of ophthalmology. 2008;56(1):45. doi: 10.4103/0301-4738.37595

Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen C-J, Joseph N, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299(5607):708-10. doi: 10.1126/science.1079666

Corless CL, Schroeder A, Griffith D, Town A, McGreevey L, Harrell P, et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. Journal of Clinical Oncology. 2005;23(23):5357-64. doi: 10.1200/JCO.2005.14.068

Duensing A, Heinrich MC, Fletcher CD, Fletcher JA. Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer investigation. 2004;22(1):106-16. doi: 10.1081/cnv-120027585

Holtkamp N, Okuducu AF, Mucha J, Afanasieva A, Hartmann C, Atallah I, et al. Mutation and expression of PDGFRA and KIT in malignant peripheral nerve sheath tumors, and its implications for imatinib sensitivity. Carcinogenesis. 2006;27(3):664-71. doi: 10.1093/carcin/bgi273

Quek R, George S. Update on the treatment of gastrointestinal stromal tumors (GISTs): role of imatinib. Biologics: targets & therapy. 2010;4:19. doi: 10.2147/btt.s4396

Kimchi-Sarfaty C, Oh JM, Kim I-W, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A” silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315(5811):525-8. doi: 10.1126/science.1135308

Wittwer CT. High-resolution DNA melting analysis: advancements and limitations. Human mutation. 2009;30(6):857-9. doi: 10.1002/humu.20951

Słomka M, Sobalska-Kwapis M, Wachulec M, Bartosz G, Strapagiel D. High resolution melting (HRM) for high-throughput genotyping— limitations and caveats in practical case studies. International journal of molecular sciences. 2017 Nov;18(11):2316. doi: 10.3390/ijms18112316

Farrar JS, Wittwer C. High-resolution melting curve analysis for molecular diagnostics. Molecular diagnostics: Elsevier; 2017. p. 79-102. doi:10.1016/ B978-0-12-802971-8.00006-7

Hondow HL, Fox SB, Mitchell G, Scott RJ, Beshay V, Wong SQ, Dobrovic A. A high-throughput protocol for mutation scanning of the BRCA1 and BRCA2genes. BMC cancer. 2011 Dec;11(1):1-1. doi: 10.1186/1471-2407-11-265