Quantification of Muscle Metabolites Using Proton Magnetic Resonance Spectroscopy (1H-MRS) for Incomplete Spinal Cord Injury Patients: Preliminary Study

Main Article Content

Nur Syahfinaz Hidayah Rusli
Faikah Zakaria
Hairil Rashmizal Abdul Razak

Abstract

Introduction: This preliminary study aimed to non-invasively evaluate choline (CHO), creatine (Cr) and intramyo- cellular lipid (IMCL) metabolites in skeletal muscles at pre- and post-functional electrical stimulation (FES) exercise among incomplete spinal cord injury (SCI) of American Spinal Injury Association Impairment Scale (ASIA-AIS) D patients using proton magnetic resonance spectroscopy or 1H-MRS. Methods: These metabolites were measured from the vastus lateralis and semitendinosus muscles of three incomplete SCI ASIA-AIS D patients who completed the FES exercise and later underwent 3 Tesla (T) MRI (repetition time/echo time; TR/TE of 3500ms/100ms, field-of- view; FOV of 20cm, slice thickness of 6mm) and 1H-MRS (TR/TE of 2000ms/31ms, voxel size of 20mm x 20mm x 35mm). Results: Out of those selected metabolites, only CHO value of vastus lateralis showed a statistically signifi- cant difference between pre- and post FES exercise 1H-MRS scanning (p = 0.01). Conclusion: Therefore, this prelim- inary finding has postulated that the quantification of muscle metabolites using 1H-MRS imaging could be used as a potential indicator in evaluating the muscle strength for incomplete SCI ASIA-AIS D patients after the completion of FES cycling exercise.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rusli, N. S. H., Zakaria, F., & Abdul Razak, H. R. (2021). Quantification of Muscle Metabolites Using Proton Magnetic Resonance Spectroscopy (1H-MRS) for Incomplete Spinal Cord Injury Patients: Preliminary Study. Malaysian Journal of Medicine and Health Sciences, 17(2), 4–10. Retrieved from http://mjmhsojs.upm.edu.my/index.php/mjmhs/article/view/255
Section
Original Articles

References

Befroy DE, Shulman GI. Magnetic resonance spectroscopy studies of human metabolism. Diabetes. 2011; 60(5):1361–9.

Boesch C. Human Muscle Studies by Magnetic Resonance Spectroscopy. eMagRes. 2009;1-12.

Boesch C. Musculoskeletal spectroscopy. J Magn Reson Imaging. 2007;25(2):321–38.

Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal Tumors: How to Use Anatomic, Functional, and Metabolic MR Techniques. Radiology. 2012; 265(2):340-56

Jäger R, Purpura M, Kingsley M. Phospholipids and sports performance. Journal of the International Society of Sports Nutrition. 2007;4(5):1-8

Baker JS, McCormick, MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab. 2010;2010(1):1-13

Deshmukh S, Subhawong T, Carrino J, Fayad L. Role of MR spectroscopy in musculoskeletal imaging. Indian J Radiol Imaging. 2014;24(3):210- 6

Roberts TT, Leonard GR, Cepela DJ. Classifications In Brief: American Spinal Injury Association (ASIA) Impairment Scale. Clin Orthop Relat Res. 2017;475(5):1499–504.

van Middendorp JJ, Goss B, Urquhart S, Atresh S, Williams RP, Schuetz M. Diagnosis and Prognosis of Traumatic Spinal Cord Injury. Glob Spine J. 2011;1(1):001–7.

Ibrahim A, Lee KY, Kanoo LL, Tan CH, Hamid MA, Hamedon NM, et al. Epidemiology of Spinal Cord Injury in Hospital Kuala Lumpur. Spine. 2013;38(5):419–24.

Gater DR, Dolbow D, Tsui B, Gorgey AS. Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation. 2011;28(3):231–48.

Fazio C. Functional Electrical Stimulation for Incomplete Spinal Cord Injury. Baylor Univ Med Cent Proc. 2017;27(4):353–5.

Kuciel NM, Konieczny GK, Oleksy Ł, Wrzosek Z. Lower extremity muscles activity in standing and sitting position with use of sEMG in patients suffering from Charcot-Marie-Tooth syndrome. Neurol Neurochir Pol. 2016;50(3):195–9

Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localised 1H-MR-spectroscopy. Magn Reson Med. 1997;37(4):484–93.

Klepochová R, Valkovič L, Hochwartner T, Triska C, Bachl N, Tschan H, et al. Differences in muscle

metabolism between triathletes and normally active volunteers investigated using multinuclear magnetic resonance spectroscopy at 7T. Front Physiol. 2018;9(300):1–13.

Finanger EL, Russman B, Forbes SC, Rooney WD, Walter GA, Vandenborne K. Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne Muscular Dystrophy. Phys Med Rehabil Clin N Am. 2012;23(1):1–12.

Kumbhare DA, Elzibak AH, Akbari A, Noseworthy MD. Advanced Skeletal Muscle MR Imaging Approaches in the Assessment of Muscular Dystrophies. Int J Phys Med Rehabil. 2014;2(6):1- 11.

Amarteifio E, Nagel AM, Kauczor H, Weber M. Functional imaging in muscular diseases. Insights Imaging. 2011;2(5):609–19.

Kreis R, Jung B, Slotboom J, Felblinger J, Boesch C. Effect of exercise on the creatine resonances in 1H MR spectra of human skeletal muscle. J Magn Reson. 1999;137(2):350–7.

Prompers JJ, Jeneson JAL, Drost MR, Oomens CCW, Strijkers GJ, Nicolay K. Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR Biomed. 2006;19(7):927–53.

Boesch C, Kreis R. Dipolar coupling and ordering effects observed in magnetic resonance spectra of skeletal muscle. NMR Biomed. 2001;14(2):140–8.

Gujar KS, Sharad M, Bjorkman-Burtscher I, Sundgren CP. Magnetic Resonance Spectroscopy. J Neuro-Ophthalmol. 2005;25(3):217-26.

Arto C. Nirkko M, Kai M. Rosler M, Johannes Slotboom P. Muscle Metabolites : Functional MR Spectroscopy during Exercise Imposed by Tetanic Electrical Nerve. Radiology. 2006;241(1):235–42.

Vermathen P, Saillen P, Boss A, Zehnder M, Boesch C. Skeletal Muscle 1H MRSI Before and After Prolonged Exercise. I. Muscle Specific Depletion of Intramyocellular Lipids. Magn Reson Med. 2012;68(5):1357-67.

Gollnick PD, Sjödin B, Karlsson J, Jansson E, Saltin B. Human soleus muscle: A comparison of fiber composition and enzyme activities with other leg muscles. Pflügers Arch Eur J Physiol. 1974;348(3):247–55.

Daemen S, Van Polanen N, Hesselink MKC. The effect of diet and exercise on lipid droplet dynamics in human muscle tissue. J Exp Biol. 2018;221(Pt Suppl 1):1-12

Décombaz J, Schmitt B, Ith M, Decarli B, Diem P, Kreis R, et al. Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects. Am J Physiol - Regul Integr Comp Physiol. 2001;281(3):760–9.

Chang G, Wang L, Cárdenas-Blanco A, Schweitzer ME, Recht MP, Regatte RR. Biochemical and physiological MR imaging of skeletal muscle at 7 Tesla and above. Semin Musculoskelet Radiol. 2010;14(2):269–78.

Valkovič L, Klepochová R, Kr ák M. Multinuclear Magnetic Resonance Spectroscopy of Human Skeletal Muscle Metabolism in Training and Disease. Muscle Cell and Tissue - Current Status of Research Field. 2018; p. 33–62.

Ipavec-Levasseur S, Croci I, Choquette S, Byrne NM, Cowin G, O’Moore-Sullivan TM, et al. Effect of 1-h moderate-intensity aerobic exercise on intramyocellular lipids in obese men before and after a lifestyle intervention. Appl Physiol Nutr Metab. 2015;40(12):1262–8.

Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, et al. Regulation in relation of endogenous fat and carbohydrate to exercise intensity and duration metabolism. Am J Physiol - Endocrinol Metab. 1993;265(3 Pt 1):380–91.

Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH. Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am J Physiol - Endocrinol Metab. 2004;287(5):857–63.

Schrauwen-Hinderling VB, Schrauwen P, Hesselink MKC, Van Engelshoven JMA, Nicolay K, Saris WHM, et al. The increase in intramyocellular lipid content is a very early response to training. J Clin Endocrinol Metab. 2003;88(4):1610–6.

Helge JW, Dela F. Effect of training on muscle triacylglycerol and structural lipids: A relation to insulin sensitivity? Diabetes. 2003;52(8):1881–7.

Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R. Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Eur J Physiol. 1985;403(4):369–76.

Penry JT, Manore MM. Choline: An Important Micronutrient for Maximal Endurance-Exercise Performance? Int J Sport Nutr Exerc Metab. 2008;18(2):191–203.

Conlay LA, Sabounjian LA, Wurtman RJ. Exercise and neuromodulators: choline and acetylcholine in marathon runners. Int J Sports Med. 1992;13(Suppl 1):S141–2.

H. Zeisel S. Choline: Human Requirements and Effects on Human Performance. In: Food Components to Enhance Performance: An Evaluation of Potential Performance-Enhancing Food Components for Operational Rations. Washington: National Academies Press 1994.

Kanter MM, Williams MH. Antioxidants, Carnitine, and Choline as Putative Ergogenic Aids. Int J Sport Nutr. 1995;5(Suppl 1):120–31.

Warber JP, Patton JF, Tharion WJ, Zeisel SH, Mello RP, Kemnitz CP, et al. The Effects of Choline Supplementation on Physical Performance. Int J Sport Nutr. 2000;10(2):170-81.

Ribeiro MBT, Guzzoni V, Hord JM, Lopes GN, Marqueti RDC, De Andrade RV, et al. Resistance training regulates gene expression of molecules associated with intramyocellular lipids, glucose signaling and fiber size in old rats. Sci Rep. 2017;7(1):1–13.