The Level of N-Carboxymethyllysine and C-Reactive Protein in Type 2 Diabetes Mellitus and it’s Association with HbA1c in Diabetic Nephropathy
Main Article Content
Abstract
Introduction: N-Carboxymethyllysine (CML) is involved in diabetic nephropathy (DN) via production of oxidative stress, growth factors and cytokines. C-reactive protein (CRP) is an inflammatory marker associated with diabetes risk. This study is to determine the level of serum CML and CRP in Type 2 diabetes mellitus (T2DM) patients and healthy subjects and to determine the correlation between CML and CRP with glycated haemoglobin (HbA1c) in T2DM patients. Methods: This is a case-control study on 73 T2DM patients without nephropathy, 74 T2DM patients with nephropathy and 73 healthy subjects, aged from 18 to 65 years old. Fasting venous blood was taken and ana- lysed for CML, CRP, HbA1c, and creatinine. The comparisons of serum CML and CRP among the three groups and the correlation between CML and CRP with HbA1c (in T2DM patients) were determined. Results: The differences in CML [median (Interquartile Range) (IQR)] between healthy subjects [131.80 (73.56) ng/ml] and T2DM patients with- out nephropathy [188.80 (55.95) ng/ml]; between healthy subjects and T2DM patients with nephropathy [237.70 (439.04) ng/ml] were statistically significant (P<0.001). The differences in CRP [median (IQR)] between healthy subjects [1.64 (1.91) ng/ml] and T2DM patients without nephropathy [2.15 (5.64) ng/ml]; between healthy subjects and T2DM patients with nephropathy [4.75 (6.91) ng/ml] were statistically significant (P<0.001). Logistic regression showed CML and CRP are independent predictors of diabetic groups. There was no correlation between HbA1c with CML and CRP in T2DM groups. Conclusion: Since serum CML and CRP are independent predictors of DN, their levels can be used to identify high-risk diabetic patients prone to developing DN.
Downloads
Article Details
References
Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 2008;4(8):444-52. doi:10.1038/ncpendmet0894.
Singh VP, Bali A, Singh N, Jaggi AS. Advanced Glycation End Products and Diabetic Complications. Korean J Physiol Pharmacol: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology. 2014;18(1):1-14. doi: 10.4196/kjpp.2014.18.1.1.
Ahmed N. Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67(1):3-21. Epub 2004/12/29. doi: 10.1016/j.diabres.2004.09.004.
Neelofar K, Ahmad J. Amadori albumin in diabetic nephropathy. Indian J Endocrinol Metab. 2015;19(1):39. doi:10.4103/2230-8210.146863.
Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018;93(4):803-13. doi:10.1016/j.kint.2017.11.034.
Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546-51. doi:10.4103/2230-8210.183480.
Gerrits EG, Lutgers HL, Kleefstra N, Graaff R, Groenier KH, Smit AJ, et al. Skin autofluorescence: a tool to identify type 2 diabetic patients at risk for developing microvascular complications. Diabetes Care. 2008;31(3):517-21. doi: 10.2337/dc07-1755.
Gross JL, De Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164-76. doi:10.2337/diacare.28.1.164.
Horie K, Miyata T, Maeda K, Miyata S, Sugiyama S, Sakai H, et al. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J Clin Invest. 1997;100(12):2995-3004. doi:10.1172/JCI119853.
Sugiyama S, Miyata T, Horie K, Iida Y, Tsuyuki M, Tanaka H, et al. Advanced glycation end-products in diabetic nephropathy. Nephrol Dial Transplant. 1996;11(supp5):91-4. doi:10.1093/ndt/11.supp5.91.
Berg T, Bangstad H-J, Torjesen P, Østerby R, Bucala R, Hanssen K. Advanced glycation end products in serum predict changes in the kidney morphology of patients with insulin-dependent diabetes mellitus. Metabolism. 1997;46(6):661-5. doi:10.1016/S0026-0495(97)90010-X.
Hirata K, Kubo K. Relationship between blood levels of N-carboxymethyl-lysine and pentosidine and the severity of microangiopathy in type 2 diabetes. Endoc J. 2004;51(6):537-44. doi:10.1507/endocrj.51.537.
Genuth S, Sun W, Cleary P, Sell DR, Dahms W, Malone J, et al. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes. 2005;54(11):3103-11. doi:10.2337/diabetes.54.11.3103.
Nehring SM, Goyal A, Bansal P, Patel BC. C reactive protein (CRP). Treasure Island, FL: StatPearls. 2020. https://europepmc.org/article/nbk/nbk441843.
Nakanishi S, Yamane K, Kamei N, Okubo M, Kohno N. Elevated C-reactive protein is a risk factor for the development of type 2 diabetes in Japanese Americans. Diabetes Care. 2003;26(10):2754-7. doi:10.2337/diacare.26.10.2754.
Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52(7):1799-805. doi:10.2337/diabetes.52.7.1799.
Cheng L, Zhuang H, Yang S, Jiang H, Wang S, Zhang J. Exposing the causal effect of c-reactive protein on the risk of type 2 diabetes mellitus: a mendelian randomization study. Front Genet. 2018;9:657. doi: 10.3389/fgene.2018.00657.
Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, et al. Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes. 2007;56(3):872-8. doi:10.2337/db06-0922.
Saraheimo M, Teppo A-M, Forsblom C, Fagerudd J, Groop P-H. Diabetic nephropathy is associated with low-grade inflammation in type 1 diabetic patients. Diabetologia. 2003;46(10):1402-7. doi:10.1007/s00125-003-1194-5.
Lieuw-A-Fa ML, van Hinsbergh VW, Teerlink T, Barto R, Twisk J, Stehouwer CD, et al. Increased levels of N ε-(carboxymethyl) lysine and N ε-(carboxyethyl) lysine in type 1 diabetic patients with impaired renal function: correlation with markers of endothelial dysfunction. Nephrol Dial Transplant. 2004;19(3):631-6. doi:10.1093/ndt/gfg619.
Galler A, Müller G, Schinzel R, Kratzsch J, Kiess W, Münch G. Impact of Metabolic Control and Serum Lipids on the Concentration of Advanced Glycation End Products in the Serum of Children and Adolescents With Type 1 Diabetes, as Determined by Fluorescence Spectroscopy and N-ε-(Carboxymethyl)Lysine ELISA. Diabetes Care. 2003;26(9):2609-15. doi:10.2337/diacare.26.9.2609.
King DE, Mainous AG, Buchanan TA, Pearson WS. C-reactive protein and glycemic control in adults with diabetes. Diabetes Care. 2003;26(5):1535-9. doi:10.2337/diacare.26.5.1535.
Beisswenger PJ, Howell SK, Russell GB, Miller ME, Rich SS, Mauer M. Early Progression of Diabetic Nephropathy Correlates With Methylglyoxal-Derived Advanced Glycation End Products. Diabetes Care. 2013;36(10):3234-9. doi:10.2337/dc12-2689.
Robles NR, Villa J, Gallego RH. Non-proteinuric diabetic nephropathy. J Clin Med. 2015;4(9):1761-73. doi:10.3390/jcm4091761.
Mehrotra R, Budoff M, Christenson P, Ipp E, Takasu J, Gupta A, et al. Determinants of coronary artery calcification in diabetics with and without nephropathy. Kidney Int. 2004;66(5):2022-31. doi:10.1111/j.1523-1755.2004.00974.x
Luevano-Contreras C, Chapman-Novakofski K. Dietary Advanced Glycation End Products and Aging. Nutrients. 2010;2(12):1247-65. doi:10.3390/nu2121247.
Monnier VM, Sell DR, Genuth S. Glycation products as markers and predictors of the progression of diabetic complications. Ann N Y Acad Sci. 2005;1043(1):567-81. doi:10.1196/annals.1333.065.
Varma V, Varma M, Varma A, Kumar R, Bharosay A, Vyas S. Serum total sialic acid and highly sensitive C-reactive protein: Prognostic markers for the diabetic nephropathy. J Lab Physicians. 2016;8(01):025-9. doi:10.4103/0974-2727.176230.
Wautier M, Massin P, Guillausseau P, Huijberts M, Levy B, Boulanger E, et al. N (carboxymethyl) lysine as a biomarker for microvascular complications in type 2 diabetic patients. Diabetes & Metab. 2003;29(1):44-52. doi:10.1016/S1262-3636(07)70006-X.
Okura T, Ueta E, Nakamura R, Fujioka Y, Sumi K, Matsumoto K, et al. High serum advanced glycation end products are associated with decreased insulin secretion in patients with type 2 diabetes: A brief report. J Diabetes Res. 2017;2017. doi:10.1155/2017/5139750.
Agalou S, Ahmed N, Babaei-Jadidi R, Dawnay A, Thornalley PJ. Profound mishandling of protein glycation degradation products in uremia and dialysis. J Am Soc Nephrol. 2005;16(5):1471-85. doi:10.1681/ASN.2004080635.
Bos DC, de Ranitz-Greven WL, de Valk HW. Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review. Diabetes Technol Ther. 2011;13(7):773-9. doi:10.1089/dia.2011.0034.
Sun Y-M, Su Y, Li J, Wang L-F. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochem Biophys Res Commun. 2013;433(4):359-61. doi.org/10.1016/j.bbrc.2013.02.120.
Buetler TM, Leclerc E, Baumeyer A, Latado H, Newell J, Adolfsson O, et al. Nε‐carboxymethyllysine‐modified proteins are unable to bind to RAGE and activate an inflammatory response. Mol Nutr Food Res. 2008;52(3):370-8. doi: 10.1002/mnfr.200700101.
Teerlink T, Barto R, Ten Brink HJ, Schalkwijk CG. Measurement of N ε-(carboxymethyl) lysine and N ε-(carboxyethyl) lysine in human plasma protein by stable-isotope-dilution tandem mass spectrometry. Clin Chem. 2004;50(7):1222-8. doi: 10.1373/clinchem.2004.031286.
Malenica M, Šilar M, Dujić T, Bego T, Semiz S, Škrbo S, et al. Importance of inflammatory markers and IL-6 for diagnosis and follow up of patients with type 2 diabetes mellitus. Medicinski Glasnik. 2017;14(2). doi: 10.17392/920-17.
Shikata K, Makino H. Microinflammation in the pathogenesis of diabetic nephropathy. J Diabetes Investig 2013;4(2):142-9. doi: 10.1111/jdi.12050.
Khan MI, Usman K, Ashfaq F, Himanshu D, Ali W, Idris M. Association of Hs-CRP and HbA1C with Microalbuminuria in Type-2 Diabetic patients in North India. Biomedical Research. 2012;23(3):380-4.
Takeuchi M, Makita Z, Yanagisawa K, Kameda Y, Koike T. Detection of noncarboxymethyllysine and carboxymethyllysine advanced glycation end products (AGE) in serum of diabetic patients. Mol Med. 1999;5(6):393-405. https://molmed.biomedcentral.com/track/pdf/10.1007/BF03402128.pdf.
Seo Y-H, Shin H-Y. Relationship between hs-CRP and HbA1c in Diabetes Mellitus Patients: 2015–2017 Korean National Health and Nutrition Examination Survey. Chonnam Med J. 2021;57(1):62. doi:10.4068/cmj.2021.57.1.62.
Meshram A, Agrawal U, Dhok A, Adole P, Meshram K, Khare R. HbA1c, hs-CRP and anthropometric parameters evaluation in the patients of Diabetes Mellitus of Central Rural India. Int J Med Sci Public Health. 2013;2(2):293-6. doi:10.5455/ijmsph.2013.2.291-294.
Heier M, Margeirsdottir HD, Brunborg C, Hanssen KF, Dahl-Jørgensen K, Seljeflot I. Inflammation in childhood type 1 diabetes; influence of glycemic control. Atherosclerosis. 2015;238(1):33-7. doi:10.1016/j.atherosclerosis.2014.11.018.
Bandyopadhyay R, Paul R, Basu AK, Chakraborty P, Mitra S. Study of c reactive protein in type 2 diabetes and its relation with various complications from Eastern India. J Appl Pharm Sci. 1930;3(7):156-9. doi:10.7324/JAPS.2013.3729.
Bahrami A, Zarghami N, Khajehali L. Association between C-reactive protein and HbA1C among patients with type 2 diabetes mellitus. Iranian Journal of Diabetes and Lipid Disorders. 2007;6(3):59-65+ E32. https://ijdld.tums.ac.ir/article-1-318-en.pdf.
Pan A, Wang Y, Yuan J-M, Koh W-P. High-sensitive C-reactive protein and risk of incident type 2 diabetes: a case–control study nested within the Singapore Chinese Health Study. BMC Endocr Disord. 2017;17(1):1-8. doi:10.1186/s12902-017-0159-5.
Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci. 2002;99(24):15596-601. doi:10.1073/pnas.24240799.
Henle T. AGEs in foods: do they play a role in uremia? Kidney Int. 2003;63:S145-S7. doi:10.1046/j.1523-1755.63.s84.16.x.
Gerrits EG, Lutgers HL, Kleefstra N, Groenier KH, Smit AJ, Gans ROB, et al. Skin Advanced Glycation End Product Accumulation is Poorly Reflected by Glycemic Control in Type 2 Diabetic Patients (ZODIAC-9). J Diabetes Sci Technol. 2008;2(4):572-7. doi:10.1016/S0140-6736(96)91141-1.
Wolffenbuttel BH, Giordano D, Founds HW, Bucala R. Long-term assessment of glucose control by haemoglobin-AGE measurement. The Lancet. 1996;347(9000):513-5. doi:10.1016/S0140-6736(96)91141-1.
Sakamoto S, Putalun W, Vimolmangkang S, Phoolcharoen W, Shoyama Y, Tanaka H, et al. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med. 2018;72(1):32-42. doi: 10.1007/s11418-017-1144-z.