Fibronectin-binding Protein F1 (prtF1) Gene Is Highly Distributed in Tetracycline-resistant, Erythromycin-sensitive Streptococcus pyogenes Isolates

Main Article Content

Simon Onyema Azi
Suresh Kumar
Leslie Thian Lung Than
Malina Osman
Rukman Awang Hamat

Abstract

Introduction: The internalization process of group A streptococci (GAS) into human cells is one of the crucial steps in the pathogenesis of GAS infections, which could also affect their susceptibility responses toward several antibiotics. Currently, data on the distribution of internalization-associated genes and susceptibility patterns are still lacking in Malaysia. This study investigated the distribution of fibronectin-binding protein F1 (prtF1) and streptococcal pyrogenic exotoxin B (speB) genes in GAS isolates with their susceptibility profiles and source of samples. Methods: We used 43 GAS isolates from our previous stock culture and performed antibiotic susceptibility testing by Kirby-Bauer disk diffusion method and interpreted the results according to the established guidelines. We detected virulence (prtF1 and speB) and resistance (ermA, ermB, mefA, tetM and lnuA) genes by PCR method using established primers and protocols. Results: High resistance rates were observed against doxycycline (58.1%) and clindamycin (16.3%). In comparison, 100.0% and 46.5% of GAS isolates carried speB and prtF1 genes, respectively. tetM and lnuA genes were detected in all respective resistant isolates (100% for each). No macrolide resistance genes were detected. Interestingly, prtF1 gene was highly distributed in doxycycline-resistant than doxycycline-sensitive isolates (60.0% versus 27.8%). Conclusions: High resistance rate of GAS toward doxycycline in our study may potentially reflect the uncontrol dissemination of tetM gene among our isolates. The presence of prtF1 gene among this strain would enhance its ability to evade the intracellular action of antibiotics, which may affect the management of GAS diseases. Thus, close monitoring of GAS by molecular methods is required in the future.

Downloads

Download data is not yet available.

Article Details

How to Cite
Azi, S. O., Kumar, S., Than, L. T. L., Osman, M., & Awang Hamat, R. (2021). Fibronectin-binding Protein F1 (prtF1) Gene Is Highly Distributed in Tetracycline-resistant, Erythromycin-sensitive Streptococcus pyogenes Isolates. Malaysian Journal of Medicine and Health Sciences, 17(2), 239–245. Retrieved from http://mjmhsojs.upm.edu.my/index.php/mjmhs/article/view/353
Section
Original Articles

References

Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5(11):685-94.

Arias-Constanti V, Trenchs-Sainz de la Maza V, Sanz-Marcos NE, Guitart-Pardellans C, Gene- Giralt A, Luaces-Cubells C. Invasive disease by Streptococcus pyogenes: patients hospitalized for 6 years. Enferm Infecc Microbiol Clin. 2018;36(6):352-6.

Hanski E, Caparon M. Protein F, a fibronectin- binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes. Proc Natl Acad Sci U S A. 1992;89(13):6172-6.

Shumba P, Mairpady Shambat S, Siemens N. The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections. Toxins (Basel). 2019;11(6).

Kapur V, Topouzis S, Majesky MW, Li LL, Hamrick MR, Hamill RJ. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog. 1993;15(5):327-46.

Tsai PJ, Kuo CF, Lin KY, Lin YS, Lei HY, Chen FF. Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect Immun. 1998;66(4):1460-6.

Chaussee MS, Cole RL, van Putten JP. Streptococcal erythrogenic toxin B abrogates fibronectin- dependent internalization of Streptococcus pyogenes by cultured mammalian cells. Infect Immun. 2000;68(6):3226-32.

Nyberg P, Rasmussen M, Von Pawel-Rammingen U, Bjorck L. speB modulates fibronectin-dependent internalization of Streptococcus pyogenes by efficient proteolysis of cell-wall-anchored protein F1. Microbiology. 2004;150(Pt 5):1559-69.

Facinelli B, Spinaci C, Magi G, Giovanetti E, P EV. Association between erythromycin resistance and ability to enter human respiratory cells in group A streptococci. Lancet. 2001;358(9275):30-3.

Neeman R, Keller N, Barzilai A, Korenman Z, Sela S. Prevalence of internalisation-associated gene, prtF1, among persisting group-A streptococcus strains isolated from asymptomatic carriers. Lancet. 1998;352(9145):1974-7.

Haller M, Fluegge K, Arri SJ, Adams B, Berner R. Association between resistance to erythromycin and the presence of the fibronectin binding protein F1 gene, prtF1, in Streptococcus pyogenes isolates from German pediatric patients. Antimicrob Agents Chemother. 2005;49(7):2990-3.

Baldassarri L, Creti R, Imperi M, Recchia S, Pataracchia M, Orefici G. Detection of genes encoding internalization-associated proteins in Streptococcus pyogenes isolates from patients with invasive diseases and asymptomatic carriers. J Clin Microbiol. 2007;45(4):1284-7.

Hotomi M, Billal DS, Togawa A, Ikeda Y, Takei S, Kono M. Distribution of fibronectin- binding protein genes (prtF1 and prtF2) and streptococcal pyrogenic exotoxin genes (spe) among Streptococcus pyogenes in Japan. J Infect Chemother. 2009;15(6):367-73.

LaPenta D, Rubens C, Chi E, Cleary PP. Group A streptococci efficiently invade human respiratory epithelial cells. Proc Natl Acad Sci U S A. 1994;91(25):12115-9.

Hagman MM, Dale JB, Stevens DL. Comparison of adherence to and penetration of a human laryngeal epithelial cell line by group A streptococci of various M protein types. FEMS Immunol Med Microbiol. 1999;23(3):195-204.

Molinari G, Chhatwal GS. Streptococcal invasion. Curr Opin Microbiol. 1999;2(1):56-61.

Staali L, Morgelin M, Bjorck L, Tapper H. Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed but survive inside human neutrophils. Cell Microbiol. 2003;5(4):253- 65.

Mohammed Kalgo H, Syawani Jasni A, Rohani Abdul Hadi S, Huda Umar N, Nur Adila Hamzah S, Awang Hamat R. Extremely Low Prevalence of Erythromycin-Resistant Streptococcus pyogenes Isolates and Their Molecular Characteristics by M Protein Gene and Multilocus Sequence Typing Methods. Jundishapur J Microbiol. 2018;11(5):e12779.

Rohde M, Cleary PP. Adhesion and invasion of Streptococcus pyogenes into host cells and clinical relevance of intracellular streptococci. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes : Basic Biology to Clinical Manifestations. Oklahoma City (OK)2016.

Chiang-Ni C, Wu JJ. Effects of streptococcal pyrogenic exotoxin B on pathogenesis of Streptococcus pyogenes. J Formos Med Assoc. 2008;107(9):677-85.

Strus M, Heczko PB, Golinska E, Tomusiak A, Chmielarczyk A, Dorycka M. The virulence factors of group A streptococcus strains isolated from invasive and non-invasive infections in Polish and German centres, 2009-2011. Eur J Clin Microbiol Infect Dis. 2017;36(9):1643-9.

Defining the group A streptococcal toxic shock syndrome. Rationale and consensus definition. The Working Group on Severe Streptococcal Infections. JAMA. 1993;269(3):390-1.

C.L.S.I. Performance Standards for Antimicrobial Susceptibility Testing 2016 January 2016. 256 p.

Brenciani A, Bacciaglia A, Vecchi M, Vitali LA, Varaldo PE, Giovanetti E. Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother. 2007;51(4):1209- 16.

Natanson S, Sela S, Moses AE, Musser JM, Caparon MG, Hanski E. Distribution of fibronectin-binding proteins among group A streptococci of different M types. J Infect Dis. 1995;171(4):871-8.

Sela S, Aviv A, Tovi A, Burstein I, Caparon MG, Hanski E. Protein F: an adhesin of Streptococcus pyogenes binds fibronectin via two distinct domains. Mol Microbiol. 1993;10(5):1049-55.

Hraoui M, Boutiba-Ben Boubaker I, Doloy A, Ben Redjeb S, Bouvet A. Molecular mechanisms of tetracycline and macrolide resistance and emm characterization of Streptococcus pyogenes isolates in Tunisia. Microb Drug Resist. 2011;17(3):377- 82.

Huang CY, Lai JF, Huang IW, Chen PC, Wang HY, Shiau YR. Epidemiology and molecular characterization of macrolide-resistant Streptococcus pyogenes in Taiwan. J Clin Microbiol. 2014;52(2):508-16.

Antibiotic Use and Antibiotic Resistance in Food Animals in Malaysia: A Threat to Human And Animal Health [press release]. Malaysia: Consumers’ Association of Penang, 10 October 2013 2013.

Shulman ST, Bisno AL, Clegg HW, Gerber MA, Kaplan EL, Lee G. Clinical practice guideline for the diagnosis and management of group A streptococcal pharyngitis: 2012 update by the Infectious Diseases Society of America. Clin Infect Dis. 2012;55(10):e86-102.

Lu B, Fang Y, Fan Y, Chen X, Wang J, Zeng J. High Prevalence of Macrolide-resistance and Molecular Characterization of Streptococcus pyogenes Isolates Circulating in China from 2009 to 2016. Front Microbiol. 2017;8(1052).

Rafei R, Hawli M, Osman M, Dabboussi F, Hamze M. Distribution of emm types and macrolide resistance determinants among group A streptococci in the Middle East and North Africa. Journal of Global Antimicrobial Resistance. 2020.

Silva-Costa C, Friães A, Ramirez M, Melo-Cristino J, Portuguese Group for the Study of Streptococcal I. Differences between macrolide-resistant and -susceptible Streptococcus pyogenes: importance of clonal properties in addition to antibiotic consumption. Antimicrob Agents Chemother. 2012;56(11):5661-6.

Richter SS, Heilmann KP, Beekmann SE, Miller NJ, Miller AL, Rice CL. Macrolide-resistant Streptococcus pyogenes in the United States, 2002-2003. Clin Infect Dis. 2005;41(5):599-608.

Sriskandan S, McKee A, Hall L, Cohen J. Comparative effects of clindamycin and ampicillin on superantigenic activity of Streptococcus pyogenes. J Antimicrob Chemother. 1997;40(2):275-7.

Norrby-teglund A, Ihendyane N, Darenberg J. Intravenous Immunoglobulin Adjunctive Therapy in Sepsis, with Special Emphasis on Severe Invasive Group A Streptococcal Infections. Scand J Infect Dis. 2003;35(9):683-9.

Andreoni F, Zürcher C, Tarnutzer A, Schilcher K, Neff A, Keller N. Clindamycin Affects Group A Streptococcus Virulence Factors and Improves Clinical Outcome. The Journal of Infectious Diseases. 2016;215(2):269-77.

Brisson-Noël A, Arthur M, Courvalin P. Evidence for natural gene transfer from gram-positive cocci to Escherichia coli. J Bacteriol. 1988;170(4):1739- 45.

Delvecchio A, Currie BJ, McArthur JD, Walker MJ, Sriprakash KS. Streptococcus pyogenes prtFII, but not sfbI, sfbII or fbp54, is represented more frequently among invasive-disease isolates of tropical Australia. Epidemiol Infect. 2002;128(3):391-6.

Le Bouguénec C, de Cespédès G, Horaud T. Presence of chromosomal elements resembling the composite structure Tn3701 in streptococci. J Bacteriol. 1990;172(2):727-34.

Hammerum AM, Nielsen HUK, Agersø Y, Ekelund K, Frimodt-Moller N. Detection of tet(M), tet(O) and tet(S) in tetracycline/minocycline-resistant Streptococcus pyogenes bacteraemia isolates. J Antimicrob Chemother. 2004;53(1):118-9.

Malhotra-Kumar S, Lammens C, Piessens J, Goossens H. Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob Agents Chemother. 2005;49(11):4798-800.

Brenciani A, Bacciaglia A, Vignaroli C, Pugnaloni A, Varaldo PE, Giovanetti E. Phim46.1, the main Streptococcus pyogenes element carrying mef(A) and tet(O) genes. Antimicrob Agents Chemother. 2010;54(1):221-9.

Giovanetti E, Brenciani A, Tiberi E, Bacciaglia A, Varaldo PE. ICESp2905, the erm(TR)-tet(O) element of Streptococcus pyogenes, is formed by two independent integrative and conjugative elements. Antimicrob Agents Chemother. 2012;56(1):591-4.

Nielsen HU, Hammerum AM, Ekelund K, Bang D, Pallesen LV, Frimodt-Moller N. Tetracycline and macrolide co-resistance in Streptococcus pyogenes: co-selection as a reason for increase in macrolide-resistant S. pyogenes? Microb Drug Resist. 2004;10(3):231-8.

Brandt CM, Allerberger F, Spellerberg B, Holland R, Lutticken R, Haase G. Characterization of consecutive Streptococcus pyogenes isolates from patients with pharyngitis and bacteriological treatment failure: special reference to prtF1 and sic/drs. J Infect Dis. 2001;183(4):670-4.

Jadoun J, Ozeri V, Burstein E, Skutelsky E, Hanski E, Sela S. Protein F1 Is Required for Efficient Entry of Streptococcus pyogenes into Epithelial Cells. The Journal of Infectious Diseases. 1998;178(1):147- 58.

Natanson S, Sela S, Moses AE, Musser JM, Caparon MG, Hanski E. Distribution of Fibronectin-Binding Proteins among Group A Streptococci of Different M Types. The Journal of Infectious Diseases. 1995;171(4):871-8.

Spinaci C, Magi G, Zampaloni C, Vitali LA, Paoletti C, Catania MR. Genetic diversity of cell- invasive erythromycin-resistant and -susceptible group A streptococci determined by analysis of the RD2 region of the prtF1 gene. J Clin Microbiol. 2004;42(2):639-44.