Antibacterial Properties of Hydrogel Membranes Infused with Liquid Smoke on Growth Inhibition of Staphylococcus aureus
Main Article Content
Abstract
Introduction: Staphylococcus aureus is the most common bacteria infecting chronic wounds. Wound dressing are available in various physical forms including hydrogels. However, hydrogels are expensive and contain synthetic materials, so natural materials such as liquid smoke infusing to the hydrogels will be improve its composition and needed as antibacterial wound dressing. This study analysed the difference in antibacterial activity between a hydrogel base and hydrogel membranes infused with liquid smoke to inhibit the growth of S. aureus. Methods: This study was a true laboratory experiment with a post-test only control group design. Twenty-four samples were divided into four concentration groups of 0%, 8%, 12% and 16%. The parallel streak method (AATCC 147-2004) was used for antibacterial testing. Data were analysed using Kruskall-Wallis and Mann-Whitney tests. Results: The average clear zone widths of inhibition of S. aureus at 0%, 8%, 12% and 16% were 0.013 mm, 0.416 mm, 1.191 mm and 1.625 mm respectively. The Mann-Whitney test indicated significant difference in the width of the inhibition zone between 0% and 12% and 16%, and between 8% and 16% (p<0.05). The hydrogel membrane infused with liquid smoke at a concentration of 12% was the lowest concentration that inhibited S. aureus. Conclusion: Hydrogel membranes infused with liquid smoke had antimicrobial properties against growth inhibition of S. aureus.
Downloads
Article Details
References
Jawertz, Melnick, Adeberg’s. Mikrobiologi Kedokteran Edisi 23 Penerjemah Geo F. Brooks, Janet S. Butel, dan Stephen A. Morse. Jakarta: Penerbit Buku Kedokteran EGC. 2005.
Rhoads DD, Cox SB, Rees EJ, Sun Y, Wolcott RD. Clinical Identification of Bacteria in Human Chronic Wound Infections : Culturing vs. 16S Ribosomal DNA Sequencing. BMC Infectios Diseases. 2012;12(321):1–8. https://doi.org/10.1186/1471-2334-12-321
Cardona AF, Wilson SE. Skin and Soft-Tissue Infections : A Critical Review and the Role of Telavancin in Their Treatment. Clinical Infentious Diseases. 2015;61:69–78. https://doi.org/10.1093/cid/civ528
Cristina A, Gonzalez DO. Wound Healing - A Literature Review. Anais Brasileiros de Dermatologia. 2016; 5: 614–20. https://doi.org/10.1590/abd1806-4841.20164741
Jagur-grodzinski J. Polymeric Gels and Hydrogels for Biomedical and Pharmaceutical Applications. Poymers Advanced Technology. 2010;21:27–47. https://doi.org/10.1002/pat.1504
Singh A, Peppas NA. Hydrogels and Scaffolds for Immunomodulation. Advenced Materials. 2014;1–12. https://doi.org/10.1002/adma.201402105
Ahmed EM. Hydrogel : Preparation, Characterization and Applications : A Review. Journal of Advanced Research. 2015;6(2):105–21. https://doi.org/10.1016/j.jare.2013.07.006
Kamoun EA, Kenawy ES, Chen X. A Review on Polymeric Hydrogel Membranes for Wound Dressing Applications : PVA-Based Hydrogel Dressings. Journal of Advanced Research. 2017;8(3):217–33. https://doi.org/10.1016/j. jare.2017.01.005
Kamoun EA, Chen X, Mohy MS, Kenawy ES. Crosslinked Poly (Vinyl Alcohol) Hydrogels for Wound Dressing Applications : A Review of Remarkably Blended Polymers. Arab Journal of Chemistry. 2014; 8(1): 1-14. https://doi.org/10.1016/j.arabjc.2014.07.005
Celebi H, Kurt A. Effect of Processing on the Properties of Chitosan/Cellulose Nanocrystal Films. Carbohydrate Polymers. 2015: 133 (20): 284-93. https://doi.org/10.1016/j.carbpol.2015.07.007
Zhang J, Sun X. Mechanical Properties of Poly (Lactic acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules 2004;1446–51. https://doi.org/10.1021/bm0400022
Mukhtar S, Ghori I. Antibacterial Activity of Aqueous and Ethanolic Extarcts of Garlic, Cinnamon and Turmeric Against Escherichia Coli ATCC 25922 and Bacillus Subtilis DSM 3256. International Journal of Applied Biology Pharmaceutical Technology. 2012;3(2):131–6. Avalaible online: www.ijabpt.com
Tarawan VM, Mantilidewi KI, Dhini IM, Radhiyanti PT, Sutedja E. Coconut Shell Liquid Smoke Promotes Burn Wound Healing. Journal of Evidance-Based Integrative Medicine. 2017;22(38):436–40. https://doi.org/10.1177/2156587216674313
Kasim F, Fitrah AN, Hambali E. Aplikasi Asap Cair pada Lateks. Jurnal PASTI. 2015;IX(1):28–34.
Kailaku S, Syakir M, Mulyawanti I, Syah A. Antimicrobial Activity of Coconut Shell Liquid Smoke. IOP Conference Series: Materials Science and Engineering. 2017;1–6.
Pinho E, Magalhães La, Henriques Ma, Oliveira R. Antimicrobial activity assessment of textiles: standard methods comparison. Ann Microbiol. 2011;61:493–498. doi: 10.1007/s13213-010-0163-8
Perez M, Gandara P, Garcia A, Blanco A, Pineiro S, Chamorro C, Lorenzo AI. Hyaluronic Acid Dermal Fillers in the Management of Recurrent Angular Cheilitis : A Case Report. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2019;129:20-25 https://doi.org/10.1016/j.oooo.2019.06.026
Carvalho A, Waitman F, Silva DO, Telleria J, Moura V, Prieto T, et al. Tetracycline Hydrochloride- Loaded Electrospun Nano Fibers Mats Based on PVA and Chitosan for Wound Dressing. Materials Science and Engineering C. 2017;77:271–81. http://dx.doi.org/10.1016/j.msec.2017.03.199
Adhiasari R, Santoso O, Ciptaningtyas VR. Pengaruh Asap Cair Berbagai Konsentrasi Terhadap Viabilitas Staphylococcus aureus. Jurnal Kedokteran Diponegoro. 2019;8(1):420–7.
Anisah K. Analisa Komponen Kimia dan Uji Antibakteri Asap Cair Tempurung Kelapa Sawit (Elaeis guineensis Jacq.) pada Bakteri Staphylococcus aureus Dan Pseudomonas aeruginosa [undergraduate thesis]. Jakarta. UIN Syarif Hidayatullah Jakarta. 2014.
Milly PJ. Antimicrobial Properties of Liquid Smoke Fractions [master's thesis]. Georgia. University of Georgia; 2003.
Zongo C, Savadogo A, Somda MK, Koudu J, Traore AS. In Vitro Evaluation of the Antimicrobial and Antioxidant Properties of Extracts from Whole Plant of Alternanthera pungens H.B. & K. and Leaves of Combretum sericeum G. Don. International Journal Phytomedicine. 2011;3:182–91.
Zuraida I, Mulawarman U, Sukarno S, Budijanto S. Antibacterial Activity of Coconut Shell Liquid Smoke (CS-LS) and Its Application on Fish Ball Preservation. Int Food Res J. 2011;18:405–10.
Pellisari F, Grosmann M, Yamashita F, Pineda EA. Antimicrobial, Mechanical, and Barrier Properties of Cassava Starch - Chitosan Films Incorporated with Oregano Essential Oil. Journal of Agricultural and Food Chemistry. 2009;57:7499–504.
Dinar YW. Aktivitas Antibakteri Ekstrak Etanol Kayu Secang (Caesalpinia sappan L.) Terhadap Staphylococcus aureus ATCC 25923, Shigella sonnei ATCC 9290, dan Escherichia coli ATCC 25922 [undergaduate thesis]. Surakarta. Universitas Muhammadiyah Surakarta; 2012.
Reuk-ngam N, Chimnoi N, Khunnawutmanotham N, Techasakul S. Antimicrobial Activity of Coronarin D and its Synergistic Potential with Antibiotics. Biomed Research International. 2014;2014:1-8
Sumpono. Uji Aktivitas Antioksidan dan Antibakteri Asap Cair Tempurung Kelapa Sawit. Semin Nasional Pendidikan Sains. 2018/10/27.