Determining the Feasibility of Dose Reduction Strategies on Radiation Dose: An Experimental Phantom Study
Main Article Content
Abstract
Introduction: Radiation exposure during the CT examination has always been a concern due to its associated cancer risk. The guidelines suggest the optimization of radiation dose reduction. Therefore, this study aims to determine the feasibility of dose reduction strategies on radiation dose reduction using a phantom. Methods: Head and body phantoms of 16 cm and 32 cm, respectively, were used to calculate the radiation dose and measure the quantitative image quality. The phantoms were positioned and scanned with the standard protocol and low dose protocol. For dose reduction strategies, scan length was reduced in head phantom, and tube voltage and tube current were manipulated individually and by combining both and tested in both head and body phantoms. Also, the influence of rotation time was investigated in body phantom. Quantitative image quality was determined by drawing a region of interest on the obtained image. Results: Reducing scan length showed 41% reduction of radiation dose and reducing tube current, and tube voltage showed up to 75% reduction of radiation dose in head phantom and 70% reduction of radiation dose in body phantom compared to the standard protocol. The reduction of the rotation time, however, reduced the scan time and the radiation dose but the maximum mAs or tube current allowed was limited. Quantitative image quality was reduced when using a lower dose protocol. Conclusion: The dose reduction strategies showed a reduced dose, but the quantitative image quality score was reduced when scanned with low dose protocol. Further manipulation can be performed to maintain image quality.
Downloads
Article Details
References
Nania A, Weir A, Weir N, Ritchie G, Rofe C, Van Beek E. CTPA protocol optimisation audit: Challenges of dose reduction with maintained image quality. Clinical Radiology. 2018; 73(3):320. e1-e8. doi: 10.1016/j.crad.2017.09.012
Prokop M. Multislice CT: Technical Principles and Future Trends. Eur Radiol. 2003; 13; M3-M13.
Ibrahim M, Parmar H, Christodoulou E, Mukherji S. Raise the bar and lower the dose: Current and future strategies for radiation dose reduction in head and neck imaging. Am J Neuroradiol. 2014;35(4):619-624. doi:10.3174/ajnr.A3473
Hatziioannou K, Papanastassiou E, Delichas M, Bousbouras P. A contribution to the establishment of diagnostic reference levels in CT. Br J Radiol. 2003; 76 (908); 541–545. doi:10.1259/bjr/60897046
Berrington de González A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169(22):2071-2077. doi:10.1001/archinternmed.2009.440
Zhang WL, Li M, Zhang B, Geng HY, Liang YQ, Xu K, et al. CT angiography of the head-and- neck vessels acquired with low tube voltage, low iodine, and iterative image reconstruction: clinical evaluation of radiation dose and image quality. PLoS One. 2013;8(12). e81486. doi: 10.1371/journal.pone.0081486.
Zondervan RL, Hahn PF, Sadow CA, Liu B, Lee SI. Body CT scanning in young adults: Examination indications, patient outcomes, and risk of radiation- induced cancer. Radiology. 2013;267(2):460-469. doi:10.1148/radiol.12121324
Zondervan RL, Hahn PF, Sadow CA, Liu B, Lee SI. Frequent Body CT Scanning of Young Adults: Indications, Outcomes, and Risk for Radiation-Induced Cancer. J Am Coll Radiol. 2011;8(7):501-507. doi:10.1016/j.jacr.2010.12.025
McCollough CH. Diagnostic Reference Levels. American College of Radiology. Nov 2010; 1-6.
Moser JB, Sheard SL, Edyvean S, Vlahos I. Radiation dose-reduction strategies in thoracic CT. Clin Radiol. 2017;72(5):407-420. doi:10.1016/j. crad.2016.11.021
Dousi M, Syrgiamiotis V, Jp M, Varaklioti A, Malliarou M, Sarafis P. Diagnostic reference levels as a tool to identify differences in practice among Greek computed tomography departments. Int J Radiol Radiat Ther. 2019;6(4):121–126.
Yang CC. Evaluation of impact of factors affecting CT radiation dose for optimizing patient dose levels. Diagnostics. 2020;10(10).
Dalah EZ, Al-dhubhani HW, Elmehdi HM, Obaideen A, Weis MS, Adas O. University Hospital in Sharjah Diagnostic Reference Levels for Multi-detector CT Examinations. 2019 Adv Sci Eng Technol Int Conf. :1–5.
Lin ZX, Zhou CS, Schoepf UJ, Eid M, Duguay TM, Greenberg WT, et al. Coronary CT angiography radiation dose trends: A 10-year analysis to develop institutional diagnostic reference levels. Eur J Radiol. 2019;113:140–147.
Rawashdeh M, Saade C, Zaitoun M, Abdelrahman M, Brennan P, Alewaidat H, et al. Establishment of diagnostic reference levels in cardiac computed tomography. J Appl Clin Med Phys. 2019;20(10):181–6.
Kanematsu M, Goshima S, Miyoshi T, Kondo H, Watanabe H, Noda Y, et al. Whole-body CT angiography with low tube voltage and low- concentration contrast material to reduce radiation dose and iodine load. Am J Roentgenol. 2014; 202(1): W106–W116. doi:10.2214/AJR.13.10720
Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, et al. Strategies for CT Radiation Dose Optimization. Radiology. 2004; 230(3): 619–628. doi:10.1148/radiol.2303021726
Cho PK. The development of a diagnostic reference level on patient dose for head computed tomography angiography examinations in korea. Radiat Prot Dosimetry. 2013;154(4):505-509. doi:10.1093/rpd/ncs264
S Rebecca Smith-Bindman, Jafi Lipson, Ralph Marcus, Kwang-Pyo Kim, Mahadevappa Mahesh, Robert Gould, et al. Radiation Dose Associated With Common Computed Tomography Examinations and the Associated Lifetime Attributable Risk of Cancer. Arch Intern Med. 2009;169(22):2078. doi:10.1186/1868-7083-5-2
Iezzi R, Santoro M, Marano R, Di Stasi C, Dattesi R, Kirchin M, et al. Low-Dose Multidetector CT Angiography in the Evaluation of Infrarenal Aorta and Peripheral Arterial Occlusive Disease. Radiology. 2012;263(1):287-298. doi:10.1148/radiol.11110700
Prasad SR, Wittram C, Shepard JA, McLoud T, Rhea J. Standard-dose and 50%-reduced-dose chest CT: comparing the effect on image quality. AJR. 2002; 179(2): 461–465.
Ravenel JG, Scalzetti EM, Huda W, Garrisi W. Radiation exposure and image quality in chest CT examinations. Am J Roentgenol. 2001;177(2):279-284. doi:10.2214/ajr.177.2.1770279
Xia W, Wu JT, Yin XR, Wang ZJ, Wu HT. CT angiography of the neck: Value of contrast medium dose reduction with low tube voltage and high tube current in a 64-detector row CT. Clin Radiol. 2014;69(4): e183-e189. doi:10.1016/j. crad.2013.12.001
Vañó E, Miller DL, Martin CJ, Rehani MM, Kang K, Rosenstein M, et al. ICRP Publication 135: Diagnostic Reference Levels in Medical Imaging. Ann ICRP. 2017;46(1):1-144. doi:10.1177/0146645317717209
Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, et al. Abdominal CT with Low Tube Voltage: Preliminary Observations about Radiation Dose, Contrast Enhancement, Image Quality, and Noise. Radiology. 2005;237(3):945- 951. doi:10.1148/radiol.2373041655
Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S, et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: Impact of different scanning protocols on effective dose estimates. Circulation. 2006;113(10):1305-1310. doi:10.1161/CIRCULATIONAHA.105.602490
Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF. Low-Kilovoltage Multi- Detector Row Chest CT in Adults: Feasibility and Effect on Image Quality and Iodine Dose. Radiology. 2004;231(1):169-174. doi:10.1148/radiol.2311030191
Bahner ML, Bengel A, Brix G, Zuna I, Kauczor HU, Delorme S. Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol. 2005;40(4):229-234. doi:10.1097/01.rli.0000155281.32319.52
Jangland L, Sanner E, Persliden J. Dose reduction in computed tomography by individualized scan protocols. Acta radiol. 2004; 45(3): 301-307. doi:10.1080/02841850410004814
Karabulut N, Törü M, Gelebek V, Gülsün M, Ariyürek OM. Comparison of low-dose and standard-dose helical CT in the evaluation of pulmonary nodules. Eur Radiol. 2002;12(11):2764-2769.
Rodrigues MA, Williams MC, Fitzgerald T, Connell M, Weir NW, Newby DE, et al. Iterative reconstruction can permit the use of lower X-ray tube current in CT coronary artery calcium scoring. Br J Radiol. 2016;89(1064). doi:10.1259/ bjr.20150780
O’Neill SB, O’Connora OJ, McWilliams SR, Shanahan F, Maher MM. Minimization of radiation exposure due to computed tomography in inflammatory bowel disease. Clin Res Hepatol Gastroenterol. 2011;35(2):105-110. doi:10.1016/j. clinre.2010.11.007
Mirsadraee S, Weir NW, Connolly S, Murchison JT, Reid JH, Hirani N, et al. Feasibility of radiation dose reduction using AIDR-3D in dynamic pulmonary CT perfusion. Clin Radiol. 2015;70(8):844-851. doi:10.1016/j.crad.2015.04.004
Christe A, Torrente JC, Lin M, Yen A, Hallett R, Roychoudhury K, et al. CT screening and follow-up of lung nodules: Effects of tube current-time setting and nodule size and density on detectability and of tube current-time setting on apparent size. Am J Roentgenol. 2011;197(3):623-630. doi:10.2214/ AJR.10.5288
Scholtz JE, Kaup M, Kraft J, Nöske EM, Scheerer F, Schulz B, et al. Objective and subjective image quality of primary and recurrent squamous cell carcinoma on head and neck low-tube-voltage 80-kVp computed tomography. Neuroradiology. 2015;57(6):645-651. doi:10.1007/s00234-015-1512-x
Hashizume K, Tomika Y, Ichikawa Y, Kamigiri A, Yamada T, Kubooka N, et al. Effect of the difference in tube voltage on attenuation coefficients and quantitative assessment of bone SPECT/CT: a phantom study. J. Nucl. Med. 2018;59(1):1819
Huda W, Seibart J A, Ogden K M, Gingold E, Schaetzing R. Upstate.edu [Internet]. SUNY Upstate Medical University, Syracuse, NY: [Date unknown: cited 2021 June 9]. Available from: https://www.upstate.edu/radiology/education/rsna/ct/technique.php
Murakami Y, Kakeda S, Kamada K, Ohnari N, Nishimura J, Ogawa M, et al. Effect of tube voltage on image quality in 64-section multidetector 3D CT angiography: Evaluation with a vascular phantom with superimposed bone skull structures. Am J Neuroradiol. 2010;31(4):620-625. doi: 10.3174/ ajnr.A1871.