Design and Validation of Web-Based or Online Food Frequency Questionnaire for Adults: A Scoping Review
Main Article Content
Abstract
This article aimed to review the design features of web-based or online FFQ developed for adults and statistical analysis used in the validation, comparison, or reproducibility studies. The search identified 863 articles, and 29 studies met the criteria. The number of food list ranges from 12 to 279 items. The food portion size was estimated using images or a standard portion size using household measurement. Web-based FFQ was validated with other dietary assessment tools, Block FFQ and biomarker. Comparison study of web-based FFQ was done using paper-based FFQ and interviewed-administered FFQ. Two studies conducted validation and comparison study using other dietary assessment methods, biomarker and paper-based FFQ. Seven studies conducted reproducibility studies. Overall, web-based FFQs showed acceptable validity with the respective reference method and good reproducibility. Strategies to improve the application of current evidence on best practices in designing and validating a web-based FFQ can improve nutritional epidemiology studies.
Downloads
Article Details
References
Falomir Z, Arregui M, Madueño F, Corella, D, Coltell O. Automation of Food Questionnaires in Medical Studies: A state-of-the-art review and future prospects. Computers in Biology and Medicine. 2012;42(10):964-974
Shim JS, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiology and Health. 2014;36:e2014009. doi:10.4178/epih/e2014009
Simpson E, Bradley J, Poliakov I, Jackson D, Olivier P, Adamson A, et al. Iterative Development of an Online Dietary Recall Tool: INTAKE24. Nutrients. 2017;9(2):118. doi: 10.3390/nu9020118
Rollo ME, Williams RL, Burrows T, Kirkpatrick SI, Bucher T, Collins CE. What Are They Really Eating? A Review on New Approaches to Dietary Intake Assessment and Validation. Current Nutrition Reports. 2016; 5:307–314.
Cade JE. Measuring diet in the 21st century: use of new technologies. Proceedings of the Nutrition Society. Cambridge University Press; 2017;76(3):276–82.
Eldridge AL, Piernas C, Illner AK, Gibney MJ, Gurinović MA, de Vries JHM, Cade JE. Evaluation of New Technology-Based Tools for Dietary Intake Assessment-An ILSI Europe Dietary Intake and Exposure Task Force Evaluation. Nutrients. 2018 Dec 28;11(1):55. doi: 10.3390/nu11010055.
Illner AK, Freisling H, Boeing H, Huybrechts I, Crispim SP, Slimani N. Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int J Epidemiol. 2012 Aug;41(4):1187-203. doi: 10.1093/ije/dys105.
Foster E, Hawkins A, Simpson E, Adamson AJ. Developing an interactive portion size assessment system (IPSAS) for use with children. J Hum Nutr Diet. 2014 Jan;27 Suppl 1:18-25. doi: 10.1111/ jhn.12127.
Fallaize R, Forster H, Macready AL, Walsh MC, Mathers JC, Brennan L, et al. Online dietary intake estimation: reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. J Med Internet Res. 2014;16(8):e190. doi: 10.2196/jmir.3355.
Kristal AR, Kolar AS, Fisher JL, Plascak JJ, Stumbo PJ, Weiss R, et al. Evaluation of web-based, self-administered, graphical food frequency questionnaire. J Acad Nutr Diet. 2014;114(4):613- 621.
Labonté MÈ, Cyr A, Baril-Gravel L, Royer MM, Lamarche B. Validity and reproducibility of a web-based, self-administered food frequency questionnaire. Eur J Clin Nutr. 2012;66(2):166- 173.
Matthys C, Pynaert I, De Keyzer W, De Henauw S. Validity and reproducibility of an adolescent web-based food frequency questionnaire. J Am Diet Assoc. 2007;107(4):605-10. doi: 10.1016/j. jada.2007.01.005.
Celis-Morales C, Livingstone KM, Marsaux CFM et al. Effect of personalised nutrition on health-related behaviour change: evidence from the Food4Me European randomised controlled trial, International Journal of Epidemiology. 2017;46(2):578-588.
Timon CM, van den Barg R, Blain RJ, Kehoe L, Evans K, Walton J, et al. A review of the design and validation of web- and computer-based 24-h dietary recall tools. Nutrition Research Reviews. 2016;29(2):268-280.
Lombard MJ, Steyn NP, Charlton KE, Senekal M. Application and interpretation of multiple statistical tests to evaluate validity of dietary intake assessment methods. Nutrition Journal. 2015;14:40. doi: 10.1186/s12937-015-0027-y
Raatz SK, Scheett AJ, Johnson LK, Jahns L. Validity of electronic diet recording nutrient estimates compared to dietitian analysis of diet records: randomized controlled trial. J Med Internet Res. 2015 Jan 20;17(1):e21. doi: 10.2196/jmir.3744.
Cade JE, Burley VJ, Warm DL, Thompson RL, Margetts BM. Food-frequency questionnaires: a review of their design, validation and utilisation. Nutr Res Rev. 2004;17(1):5-22.
Arksey H and O’Malley L. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology. 2005;8(1):19-32.
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467-473.
Bärebring L, Amberntsson A, Winkvist A, Augustin H. Validation of Dietary Vitamin D Intake from Two Food Frequency Questionnaires, Using Food Records and the Biomarker 25-Hydroxyvitamin D among Pregnant Women. Nutrients. 2018; 10(6):745. doi: 10.3390/nu10060745.
Mykoniatis I, Grammatikopoulou MG, Bouras E, et al. Sexual Dysfunction Among Young Men: Overview of Dietary Components Associated with Erectile Dysfunction. J Sex Med. 2018;15(2):176- 182.
Verger EO, Armstrong P, Nielsen T, et al. Dietary Assessment in the MetaCardis Study: Development and Relative Validity of an Online Food Frequency Questionnaire. J Acad Nutr Diet. 2017;117(6):878- 888.
Bentzen SM, Knudsen VK, Christiensen T, Ewers B. Relative validity of a web-based food frequency questionnaire for patients with type 1 and type 2 diabetes in Denmark. Nutrition & Diabetes. 2016;6(9):e232. doi:10.1038/nutd.2016.40
Knudsen V, Hatch E, Cueto H, Tucker K, Wise L, Christensen T, et al. Relative validity of a semi- quantitative, web-based FFQ used in the ‘Snart Forældre’ cohort – a Danish study of diet and fertility. Public Health Nutrition. 2016;19(6):1027- 1034.
Allaire J, Moreel X, Labonté MÈ, Léger C, Caron A, Julien P, et al. Validation of the omega-3 fatty acid intake measured by a web-based food frequency questionnaire against omega-3 fatty acids in red blood cells in men with prostate cancer. Eur J Clin Nutr. 2015;69(9):1004-1008.
Kato E, Takachi R, Ishihara J, Ishii Y, Sasazuki S, Sawada N, et al. Online version of the self- administered food frequency questionnaire for the Japan Public Health Center-based Prospective Study for the Next Generation (JPHC-NEXT) protocol: Relative validity, usability, and comparison with a printed questionnaire. Journal of Epidemiology. 2017;27(9):435-446.
Simunaniemi AM, Andersson A, Nydahl M. Fruit and vegetable consumption close to recommendations. A partly web-based nationwide dietary survey in Swedish adults. Food Nutr Res. 2009;53. doi: 10.3402/fnr.v53i0.2023.
Vanderlee L, Reid JL, White CM, Hobin EP, Acton RB, Jones AC, et al. Evaluation of the online Beverage Frequency Questionnaire (BFQ). Nutr J. 2018;17(1):73. doi: 10.1186/s12937-018-0380-8.
Hacker-Thompson A, Robertson TP, Sellmeyer DE. Validation of two food frequency questionnaires for dietary calcium assessment. J Am Diet Assoc. 2009;109(7):1237-1240.
Apovian CM, Murphy MC, Cullum-Dugan D, Lin PH, Gilbert KM, Coffman G, et al. Validation of a web-based dietary questionnaire designed for the DASH (dietary approaches to stop hypertension) diet: the DASH online questionnaire. Public Health Nutrition. 2010;13(5):615-622.
Lo Siou G, Csizmadi I, Boucher BA, Akawung AK, Whelan HK, Sharma M, et al. The Comparative Reliability and Feasibility of the Past-Year Canadian Diet History Questionnaire II: Comparison of the Paper and Web Versions. Nutrients. 2017;9(2):133. doi: 10.3390/nu9020133.
Timon CM, Blain RJ, McNulty B, et al. The Development, Validation, and User Evaluation of Foodbook24: A Web-Based Dietary Assessment Tool Developed for the Irish Adult Population. J Med Internet Res. 2017;19(5):e158. doi: 10.2196/ jmir.6407.
Collins CE, Boggess MM, Watson JF, Guest M, Duncanson K, Pezdirc K, et al. Reproducibility and comparative validity of a food frequency questionnaire for Australian adults. Clinical Nutrition. 2014;33(5):906-914.
Christensen SE, Möller E, Bonn SE, Ploner A, Bälter O, Lissner L, et al. Relative validity of micronutrient and fiber intake assessed with two new interactive meal- and Web-based food frequency questionnaires. J Med Internet Res. 2014;16(2):e59. doi: 10.2196/jmir.2965.
Christensen SE, Möller E, Bonn SE, Ploner A, Wright A, Sjölander A, et al. Two new meal- and web- based interactive food frequency questionnaires: validation of energy and macronutrient intake. J Med Internet Res. 2013;15(6):e109. doi: 10.2196/ jmir.2458.
Masson LF, McNeill G, Tomany JO, Simpson JA, Peace HS, Wei L, et al. Statistical approaches for assessing the relative validity of a food-frequency questionnaire: use of correlation coefficients and the kappa statistic. Public Health Nutr. 2003;6(3):313-321.
Brouwer-Brolsma EM, Streppel MT, van Lee L, Geelen A, Sluik D, van de Wiel AM, et al. A National Dietary Assessment Reference Database (NDARD) for the Dutch Population: Rationale behind the Design. Nutrients. 2017;9(10):1136. doi: 10.3390/nu9101136.
Medin AC, Carlsen MH, Hambly C, Speakman JR, Strohmaier S, Andersen LF. The validity of a web- based FFQ assessed by doubly labelled water and multiple 24-h recalls. Br J Nutr. 2017;118(12):1106- 1117.
Brassard D, Lemieux S, Charest A, Lapointe A, Couture P, Labonté MÈ, et al. Comparing Interviewer- Administered and Web-Based Food Frequency Questionnaires to Predict Energy Requirements in Adults. Nutrients. 2018;10(9):1292. doi: 10.3390/ nu10091292.
Affret A, El Fatouhi D, Dow C, Correia E, Boutron- Ruault MC, Fagherazzi G. Relative Validity and Reproducibility of a New 44-Item Diet and Food Frequency Questionnaire Among Adults: Online Assessment. J Med Internet Res. 2018;20(7): e227. doi: 10.2196/jmir.9113.
Franco RZ, Alawadhi B, Fallaize R, Lovegrove JA, Hwang F. A Web-Based Graphical Food Frequency Assessment System: Design, Development and Usability Metrics. JMIR Hum Factors. 2017;4(2):e13. doi: 10.2196/humanfactors.7287.
Marshall SJ, Livingstone KM, Celis-Morales C, Forster H, Fallaize R, O’Donovan CB, et al. Reproducibility of the Online Food4Me Food- Frequency Questionnaire for Estimating Dietary Intakes across Europe. J Nutr. 2016;146(5):1068- 1075.
Nybacka S, Bertéus Forslund H, Wirfält E, Larsson I, Ericson U, Warensjö Lemming E, et al. comparison of a web-based food record tool and a food- frequency questionnaire and objective validation using the doubly labelled water technique in a Swedish middle-aged population. J Nutr Sci. 2016;5:e39. doi: 10.1017/jns.2016.29.
Schneider BC, Motta JVS, Muniz LC, Bielemann RM, Madruga SW, Orlandi SP, et al. Design of a digital and self-reported food frequency questionnaire to estimate food consumption in adolescents and young adults: birth cohorts at Pelotas, Rio Grande do Sul, Brazil. Revista Brasileira de Epidemiologia. 2016;19(2):419-432.
Forster H, Fallaize R, Gallagher C, O’Donovan CB, Woolhead C, Walsh MC, et al. Online dietary intake estimation: the Food4Me food frequency questionnaire. Journal of Medical Internet Research. 2014;16(6):e150. doi:10.2196/jmir.3105.
González Carrascosa R, García Segovia P, Martínez Monzó J. Paper and pencil vs online self- administered food frequency questionnaire (FFQ) applied to university population: a pilot study. Nutr Hosp. 2011;26(6):1378-1384.
Volkert D, Schrader E. Dietary assessment methods for older persons: what is the best approach? Curr Opin Clin Nutr Metab Care. 2013;16(5):534-540.
Zuniga K, McAuley E. Considerations in the selection of diet assessment methods for examining the effect of nutrition on cognition. J Nutr Health Aging. 2015;19(3):333-340.
Lean M, Anderson A, Morrison C, Currall J. Evaluation of a dietary targets monitor. European Journal of Clinical Nutrition. 2003;57(5):667-73.
Livingstone MBE, Robson PJ, Wallace JMW. Issues in dietary intake assessment of children and adolescents. British Journal of Nutrition. 2004;92(S2):S213–S222.
Bingham SA. Biomarkers in nutritional epidemiology. Public Health Nutrition. 2002;5(6a):821–827
Thompson FE, Subar AF, Loria CM, Reedy JL, Baranowski T: Need for technological innovation in dietary assessment. J Am Diet Assoc. 2010; 110:48-51.
Neelakantan N, Whitton C, Seah S, Koh H, Rebello SA, Lim JY, et al. Development of a Semi- Quantitative Food Frequency Questionnaire to Assess the Dietary Intake of a Multi-Ethnic Urban Asian Population. Nutrients. 2016;8(9):528. doi: 10.3390/nu8090528.
Subar AF, Thompson FE, Smith AF et al. Improving food frequency questionnaires: a qualitative approach using cognitive interviewing. Journal of American Dietetic Association. 1995;95(7):781- 788.
Molag M. Towards Transparent Development of Food Frequency Questionnaires Scientific basis of the Dutch FFQ-TOOLTM: a computer system to generate, apply, and process FFQs. [Dissertation on the internet]. Wageningen, Netherlands; Wageningen University; 2010 [cited 2019 Nov 22]. Available from: https://edepot.wur.nl/16023.
Coates J, Colaiezzi B, Fiedler J, Wirth J, Lividini K, Rogers B. Geneva. Applying Dietary Assessment Methods for Food Fortification and Other Nutrition Programs; Global Alliance for Improved Nutrition Working Paper Series No. 4 Potential 112; 2012
[updated 2012; cited 2020 Aug 5]. Available from www.gainhealth.org.
Willett W. Nutritional Epidemiology. Third Edition. Oxford, New York: Oxford University Press; 2012. p. 978
Nichelle PG, Almeida CCB, Camey SA, Garmus LM, Elias VCM, Marchioni DM, et al. Participants’ Perception in Quantifying Printed and Digital Photos of Food Portions. Nutrients. 2019;11(3):501. doi: 10.3390/nu11030501.
Subar AF, Crafts J, Zimmerman TP, Wilson M, Mittl B, Islam NG, et al. Assessment of the accuracy of portion size reports using computer-based food photographs aids in the development of an automated self-administered 24-hour recall. J Am Diet Assoc. 2010;110(1):55-64.
Bouchoucha M, Akrout M, Bellali H, Bouchoucha R, Tarhouni F, Mansour AB, et al. Development and validation of a food photography manual, as a tool for estimation of food portion size in epidemiological dietary surveys in Tunisia. Libyan J Med. 2016;11:32676.
Cade JE, Warthon-Medina M, Albar S, Alwan NA, Ness A, Roe M, et al. DIET@NET: Best Practice Guidelines for dietary assessment in health research. BMC Med. 2017;15(1):202. doi: 10.1186/s12916-017-0962-x.
Lovegrove JA, Hodson L, Sharma S. Nutrition Research Methodologies 1st edition. Pondicherry, India: John Wiley & Sons Ltd; 2015.p 52.
Gormley IC, Bai Y, Brennan L. Combining biomarker and self-reported dietary intake data: A review of the state of the art and an exposition of concepts. Statistical Methods in Medical Research. 2020;29(2):617-635.
Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA. Biomarkers in nutritional epidemiology: applications, needs, and new horizons. Human Genetic. 2009;125:507-525.
Sheila A. Bingham SA. Urine Nitrogen as a Biomarker for the Validation of Dietary Protein Intake, The Journal of Nutrition. 2003;133(3):921S-924S.
Tasevska N, Runswick SA, and Bingham SA. Urinary potassium is as reliable as urinary nitrogen for use as a recovery biomarker in dietary studies of free living individuals. The Journal of Nutrition. 2006;136(5):1334–1340.
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients. 2019;11(5):1092. doi: 10.3390/nu11051092.
Yokota RTC, Miyazaki ES, Ito MK. Applying the triads method in the validation of dietary intake using biomarkers. Cad. Saúde Pública. 2010;26( 11 ): 2027-2037.
Hebert JR, Ma Y, Clemow L, Ockene IS, Saperia G, Stanek EJ 3rd, Merriam PA, Ockene JK. Gender differences in social desirability and social approval bias in dietary self-report. Am J Epidemiol. 1997;146(12):1046-55. doi: 10.1093/oxfordjournals.aje.a009233.
Hebert JR, Clemow L, Pbert L, Ockene IS, Ockene JK. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int J Epidemiol. 1995;24(2):389-98. doi: 10.1093/ije/24.2.389.
FidanzaF,GentileMG,PorriniM.Aself-administered semiquantitative food-frequency questionnaire with optical reading and its concurrent validation. Eur J Epidemiol. 1995;11(2):163-70. doi: 10.1007/ BF01719482.
Engle A, Lynn LL, Koury K, Boyar AP. Reproducibility and comparability of a computerized, self-administered food frequency questionnaire. Nutr Cancer. 1990;13(4):281-92. doi: 10.1080/01635589009514070.
Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65(4 Suppl):1220S- 1228S; discussion 1229S-1231S. doi: 10.1093/ ajcn/65.4.1220S.
Willet WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiology. 1985;122:51–65.
Bland JM, Altman DG (1986). Statistical-methods for assessing agreement between 2 methods of clinical measurement. Lancet. 1986;1:307-310.
Tsubono Y, Nishino Y, Fukao A, Hisamichi S, Tsugane S. Temporal change in the reproducibility of a self-administered food frequency questionnaire. American Journal of Epidemiology. 1995;142(11):1231–5.
Shahar S, Shahril MR, Abdullah N, Borhanuddin B, Kamaruddin MA, Yusuf NAM, Dauni A, Rosli H, Zainuddin NS, Jamal R. Development and relative validity of a semiquantitative food frequency questionnaire to estimate dietary intake among a multi-ethnic population in the Malaysian Cohort Project. Nutrients. 2021;13(4):1163. doi: 10.3390/ nu13041163.