Effect of Systemic Administration of Granulocyte-Colony Stimulating Factor on Rate of Fracture Healing of Bone Defect in Goats as Animal Model

Main Article Content

Collin S. K. Looi
Nurul H. Khairuddin
Hui Cheng Chen
Rajesh Ramasamy
Seng Fong Lau
Sharifah A. Roohi

Abstract

Granulocyte-colony stimulating factor (G-CSF) serves as an important cytokine in haematopoiesis; released at both
physiological and pathological conditions by a range of cells. We hypothesized that the systemic administration of
G-CSF would produce an accelerated fracture-healing rate in non-union bone defects; thus, potentially leading to
useful clinical applications. Ten male adult Katjang goats, weighing about 15-26 kilograms were randomly chosen
and a tibial bone defect was induced in each animal. The defect was maintained by internal fixation with a titanium
plate and reinforced by an external fiberglass cast. Post-operative radiographs were performed twice weekly and
radiographic assessments were performed by evaluating the bridging and union measurements through a validated
method. In the treatment group, the time for bridging and union exhibited statistically significant differences when
compared with a control group. The outcomes of the present study establishing a notion that administration of G-CSF
besides inducing haematopoiesis, promotes healing of fractures and non-union bone defects as well.

Downloads

Download data is not yet available.

Article Details

How to Cite
Collin S. K. Looi, Nurul H. Khairuddin, Hui Cheng Chen, Rajesh Ramasamy, Seng Fong Lau, & Sharifah A. Roohi. (2024). Effect of Systemic Administration of Granulocyte-Colony Stimulating Factor on Rate of Fracture Healing of Bone Defect in Goats as Animal Model. Malaysian Journal of Medicine and Health Sciences, 18(4), 211–217. https://doi.org/10.47836/mjmhs.18.4.28
Section
Short Communication

References

Marsell R, Einhorn T. The biology of fracture healing. Injury. 2011;42:551–5. doi: 10.1016/j. injury.2011.03.031

Den Boer FC, Patka P, Bakker FC, Haarman HJT. Current concepts of fracture healing, delayed unions, and nonunions. Osteo Trauma Care. 2002;10:1–7. doi: 10.1055/s-2002-30627

Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, et al. Fracture induced mobilization and incorporation of bone marrowderived endothelial progenitor cells for bone healing. J Cell Physiol. 2008;215:234–42. doi: 10.1002/jcp.21309

Kuroda R, Matsumoto T, Niikura T, Kawakami Y, Fukui T, Lee SY, et al. Local transplantation of granulocyte colony stimulating factor-mobilized CD 34+ cells for patients with femoral and tibial nonunion: pilot clinical trial. Stem Cells Transl Med. 2013;3:128–34. doi: 10.5966/sctm.2013- 0106

Mifune Y, Matsumoto T, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, et al. Local delivery of Granulocyte Colony Stimulating Factor-mobilized CD 34-positive progenitor cells using bioscaffold for modality of unhealing bone fracture. Stem Cells. 2008;26:1395–405. doi: 10.1634/ stemcells.2007-0820

Matsumoto T, Kawamoto A, Kuroda R, Ishikawa M, Mifune Y, Iwasaki H, et al. Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol. 2006;196:1440–57. doi: 10.2353/ajpath.2006.060064

Chen JL, Hunt P, McElvain M, Balck T, Kaufman S, Choi ESH. Osteoblast precursor cells are found in CD34+ cells from human bone marrow. Stem Cells. 1997;15:368–77. doi: 10.1002/stem.150368

Cesseli D, Beltrami AP, Rigo S, Bergamin N, D’Aurizio F, Verardo R, et al. Multipotent progenitor cells are present in human peripheral blood. Circ Res. 2009;104:1225–34. doi: 10.1161/ CIRCRESAHA.109.195859

Zhang C, Chen XH. Granulocyte-Colony Stimulating Factor-mobilized mesenchymal stem cells: a new resource for rapid engraftment in hematopoietic stem cell transplantation. Med Hypotheses. 2011;76:241–3. Doi: 10.1016/j. mehy.2010.10.008

Dimitrou R, Mataliotakis G, Calori GM, Giannoudis PV. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med. 2012;10(81):1–24. doi: 10.1186/1741-7015- 10-81

Rozen N, Bick T, Bajayo A, Shamian B, SchriftTzadok M, Gabet Y, et al. Transplanted bloodderived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects. Bone. 2009;45:918–24. doi: 10.1016/j. bone.2009.07.085

Morshed S. Current options for determining fracture union. Adv Med. 2014;1–12. doi: 10.1155/2014/708574 13.

Roseren F, Pithioux M, Robert S, Balasse L, Guillet B, Lamy E, Roffino S. Systemic administration of G-CSF accelerates bone regeneration and modulates mobilization of progenitor cells in a at model of distraction osteogenesis. Int J Mol Sci. 2021; 22:1-20. doi: 10.3390/ijms22073505

Herrmann M, Zeiter S, Eberli U, Hildebrand M, Camenisch K, Menzel U, Alini M, Verrier S, Stadelmann VA. Five Days Granulocyte ColonyStimulating Factor treatment increases bone formation and reduces gap size of a rat segmental bone defect: A pilot study. Front Bioeng Biotechnol. 2018;6:1-11. doi: 10.3389/fbioe.2018.00005

Kurniawan A, Kodrat E, Gani YI. Effectiveness of granulocyte colony stimulating factor to enhance healing on delayed union fracture model SpragueDawley rat. Ann. Med. Surg. 2021;61:54-60. doi: 10.1016/j.amsu.2020.12.005

Bozlar M, Aslan B, Kalaci A, Baktiroglu L, Yanat AN, Tasci A. Effects of human granulocyte-colony stimulating factor on fracture healing in rats. Saudi Med J. 2005;26(8):1250-1254

Roohi SA, Looi CSK, Khairuddin NH, Chen HC. Effect of systemic administration of GranulocyteColony Stimulating Factor on white cell components in Katjang goats: A pilot study. Poster presented at: 29th Veterinary Association of Malaysia Congress 2017, Shah Alam, Malaysia. doi: 10.13140/RG.2.2.11914.16328

Crobu D, Spinetti G, Schrepfer R, Tonon G, Jotti GS, Onali P, Dedoni S, Orsini G, Di Stefano A. Preclinical and clinical phase I studies of a new recombinant Filgrastim (BK0023) in comparison with Neupogen®. BMC Pharmacol Toxicol. 2014;1;15:1-13. doi: 10.1186/2050-6511-15-7

Moukoko D, Pourquier D, Genovesio C, Thezenas S, Chabrand P, Roffino S, Pithioux M. Granulocytecolony stimulating factor enhances bone fracture healing. Clin Biomech. 2018;58:62-68. doi: 10.1016/j.clinbiomech.2018.07.010

Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia:current status and comparison with other animal models. Bone. 1995;16:277S–284S. doi: 10.1016/8756-3282(95)00026-a

Chu W, Gan Y, Zhuang Y, Wang X, Zhao J, Tang T, et al. Mesenchymal stem cells and porous ß-tricalcium phosphate composites prepared through stem cell screen-enrich-combine (-biomaterials) circulating system for the repair of critical size bone defects in goat tibia. Stem Cell Res Ther. 2018;9:1–12. doi: 10.1186/s13287-018-0906-1

Perren SM, Fernandes A, Regazzoni P. Understanding fracture healing biomechanics based on the “strain” concept and its clinical

application. Acta Chir Orthop Traumatol Cech. 2015;82:253–60.

Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater. 2008;15:e76. doi: 10.22203/ecm.v015a05

Haffner-Luntzer, M. (2021). Experimental agents to improve fracture healing: utilizing the WNT signaling pathway. Injury. 5252: 544-548. doi: 10.1016/j.injury.2020.11.051