A Review on Ergonomics Factors Determining Working in Harmony with Exoskeletons
Main Article Content
Abstract
Exoskeletons are wearable devices that can enhance human strength and are used in various fields, such as health- care and the manufacturing industry. However, poorly designed exoskeletons can strain the muscles and cause inju- ries to users. The objectives of this review paper are to review the ergonomics factors that contribute to a harmonious user-exoskeleton interaction and to explore the current trends, challenges, and future directions for developing er- gonomically designed exoskeletons. In this review, 102 relevant papers published from 2015 to 2023 were retrieved from Web of Science, Scopus, and Google Scholar. These papers were considered in the analysis for gathering rele- vant information on the topic. The authors identified six ergonomics factors, namely kinematic compatibility, contact pressure, postural control, metabolic cost, cognitive workload, as well as task demands and workplace conditions, that can influence the interaction between users and exoskeletons. By understanding and addressing these ergonom- ics factors during the design and development process, exoskeleton designers can enhance the user experience and adoption of the devices in daily living activities and industrial applications.
Downloads
Article Details
References
Lowe BD, Billotte WG, Peterson DR. ASTM F48 Formation and standards for industrial exoskeletons and exosuits. IISE Trans Occup Ergon Hum Factors [Internet]. 2019 Oct 2;7(3–4):230–6. doi:10.1080/24725838.2019.1579769
Ali A, Fontanari V, Schmoelz W, Agrawal SK. Systematic review of back-support exoskeletons and soft robotic suits. Frontiers in Bioengineering and Biotechnology . 2021; 9: 765257.doi: 10.3389/fbioe.2021.765257
Schwartz M, Theurel J, Desbrosses K. Effectiveness of soft versus rigid back-support exoskeletons during a lifting task. Int J Environ Res Public Health. 2021 Aug 1;18(15). doi: 10.3390/ijerph18158062.
Ippolito D, Constantinescu C, Riedel O. Holistic planning and optimization of human-centred workplaces with integrated Exoskeleton technology. Procedia CIRP. 2020 Jan 1;88:214–7. doi: 10.1016/j.procir.2020.05.038
Luger T, Seibt R, Cobb TJ, Rieger MA, Steinhilber B. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Appl Ergon. 2019 Oct 1;80:152–60. doi: 10.1016/j.apergo.2019.05.018
Pillai M v., van Engelhoven L, Kazerooni H. Evaluation of a lower leg support exoskeleton on floor and below hip height panel work. Human Factors: The Journal of the Human Factors and Ergonomics Society [Internet]. 2020 Mar 9 [cited 2022 Nov 10];62(3):489–500. doi:10.1177/0018720820907752
Hensel R, Keil M. Subjective Evaluation of a Passive industrial exoskeleton for lower-back support: A field study in the automotive sector. IISE Trans Occup Ergon Hum Factors [Internet]. 2019 Oct 2 [cited 2022 Nov 10];7(3–4):213–21. doi:10.1080/24725838.2019.1573770
Magdum RM, Jadhav SM. Design and implementation of chair less seating arrangement for industrial workers and farmers. GRD Journal for Engineering [Internet]. 2018;3. Available from: www.grdjournals.com
Ranaweera RKPS, Gopura RARC, Jayawardena TSS, Mann GKI. Development of a passively powered knee exoskeleton for squat lifting. Journal of Robotics, Networking and Artificial Life [Internet]. 2018;5(1):45–51. doi: 10.2991/jrnal.2018.5.1.11
Guncan B, Unal R. ANT-M: Design of passive lower-limb exoskeleton for weight-bearing assistance in industry. Biosystems and Biorobotics [Internet]. 2019 [cited 2022 Nov 10];22:500–4. doi:10.1007/978-3-030-01887-0_97
Li Z, Zhang T, Xue T, Du Z, Bai O. Effect evaluation of a wearable exoskeleton chair based on surface EMG. Chinese Control Conference, CCC. 2019 Jul 1;2019-July:4638–42. doi: 10.23919/ChiCC.2019.8865673
Zhu A, Shen Z, Shen H, Song J. Design and preliminary experimentation of passive weight-support exoskeleton. 2018 IEEE International Conference on Information and Automation, ICIA 2018. 2018 Aug 1;761–5. doi: 10.1109/ICInfA.2018.8812412
Zhu A, Shen Z, Shen H, Wu H, Zhang X. Design of a passive weight-support exoskeleton of human-machine multi-link. 2018 15th International Conference on Ubiquitous Robots, UR 2018. 2018 Aug 20;296–301. doi: 10.1109/URAI.2018.8441899
Raut V, Raut N. Fabrication of body’s exoskeleton weight lifter and wearable chair. International Journal for Innovative Research in Science & Technology. 2018;5(1):139–45.
Akshay P, kshitij P, prafull N, ganesh pagar, V GT. Design of wearable chair. International Research Journal of Engineering and Technology [Internet]. 2018; Available from: https://www.irjet.net/archives/V5/i4/IRJET-V5I4169.pdf
Han B, Du Z, Huang T, Zhang T, Li Z, Bai O, et al. Mechanical framework design with experimental verification of a wearable exoskeleton chair. Proc IEEE Int Conf Robot Autom. 2019 May 1;2019-May:4040–5. doi: 10.1109/ICRA.2019.8794466
Delicia Elisheba D, Britto Y, Christina VPF. Chair-less chair for lumbar pain reduction. International Journal of Mechanical Engineering and Technology9 (11). 2018;500–7.
Malode SM, Zilpe P, Ukani N, Chakhole S. Design of lower-limb exoskeletal. 2020 6th International Conference on Advanced Computing and Communication Systems, ICACCS 2020. 2020 Mar 1;682–6. doi: 10.1109/ICACCS48705.2020.9074211
Agarwal MS, Swanand K, Abhijit J, Mahesh K, Author C. Review on application of lower body exoskeleton. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN [Internet]. 2018 [cited 2022 Nov 10];2018. Available from: https://www.iosrjournals.org/iosr-jmce/papers/NCRIME-2018/Volume-2/6.%2031-33.pdf
Wijegunawardana ID, Kumara MBK, de Silva HHMJ, Viduranga PKP, Ranaweera RKPS, Gopura RARC, et al. ChairX: A robotic exoskeleton chair for industrial workers. IEEE International Conference on Rehabilitation Robotics. 2019 Jun 1;2019-June:587–92. doi: 10.1109/ICORR.2019.8779501
Chowdhury R, Poddar KK, Alam MA, Kumar S, Ahmed N, Som M. Design and implementation of portable healthcare chair (PHC) based on ergonomics. Proceedings of the 4th International Conference on Contemporary Computing and Informatics, IC3I 2019. 2019 Dec 1;154–9. doi: 10.1109/IC3I46837.2019.9055655
Collo A, Bonnet V, Venture G. A quasi-passive lower limb exoskeleton for partial body weight support. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. 2016 Jul 26;2016-July:643–8. doi: 10.1109/BIOROB.2016.7523698
Sasaki K, Sugimoto M, Sugiyama T, Paez Granados DF, Suzuki K. Child-sized passive exoskeleton for supporting voluntary sitting and standing motions. IEEE International Conference on Intelligent Robots and Systems. 2018 Dec 27;5457–62. doi: 10.1109/IROS.2018.8593744
Rajasekaran V, Vinagre M, Aranda J. Event-based control for sit-to-stand transition using a wearable exoskeleton. IEEE International Conference on Rehabilitation Robotics. 2017 Aug 11;400–5. doi: 10.1109/ICORR.2017.8009280
Collins SH, Bruce Wiggin M, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 2015 522:7555 [Internet]. 2015 Apr 1 [cited 2022 Nov 20];522(7555):212–5. doi: 10.1038/nature14288.
dos Santos WM, Nogueira SL, de Oliveira GC, Peña GG, Siqueira AAG. Design and evaluation of a modular lower limb exoskeleton for rehabilitation. IEEE International Conference on Rehabilitation Robotics. 2017 Aug 11;447–51. doi: 10.1109/ICORR.2017.8009288
Fernandes CR, Fernandes BL, Ranciaro M, Nohama P. Model proposal for development of a passive exoskeleton for lower limb medical devices view project Transcutaneous diaphragmatic synchronized pacing View project. Anais COBEC-SEB 2017 [Internet]. 2018 [cited 2022 Nov 10]; doi: 10.29327/cobecseb.78856
Hall ML, Lobo MA. Design and development of the first exoskeletal garment to enhance arm mobility for children with movement impairments. Assistive Technology [Internet]. 2017 Oct 20 [cited 2022 Nov 10];30(5):251–8. doi:10.1080/10400435.2017.1320690
Wang T, Zhang B, Liu C, Liu T, Han Y, Wang S, et al. A Review on the rehabilitation exoskeletons for the lower limbs of the elderly and the disabled. Electronics 2022, Vol 11, Page 388 [Internet]. 2022 Jan 27 [cited 2022 Nov 10];11(3):388. doi: 10.3390/electronics11030388
Galle S, Derave W, Bossuyt F, Calders P, Malcolm P, de Clercq D. Exoskeleton plantarflexion assistance for elderly. Gait Posture. 2017 Feb 1;52:183–8. doi: 10.1016/j.gaitpost.2016.11.040.
Walsh CJ, Endo K, Herr H. A quasi-passive leg exoskeleton for load-carrying augmentation. International Journal of Humanoid Robotics. 2011 Nov 20;4(3):487–506. doi: 10.1142/S0219843607001126
Mudie K, Billing D, Bishop DJ, Vee P, Lee S. Reducing load carriage during walking using a lower limb passive exoskeleton. International Society of Biomechanics [Internet]. 2017 [cited 2022 Nov 19]; Available from: https://www.researchgate.net/publication/319057276
Chaichaowarat R, Kinugawa J, Kosuge K. Unpowered knee exoskeleton reduces quadriceps activity during cycling. Engineering. 2018 Aug 1;4(4):471–8. doi: 10.1016/j.eng.2018.07.011
Hasegawa Y, Ogura K. First report on passive exoskeleton for easy running: PEXER IV. 2013 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2013. doi: 10.1109/MHS.2013.6710481
Koopman AS, Näf M, Baltrusch SJ, Kingma I, Rodriguez-Guerrero C, Babič J, et al. Biomechanical evaluation of a new passive back support exoskeleton. J Biomech. 2020 May 22;105:109795. doi: 10.1016/j.jbiomech.2020.109795
Koopman AS, Kingma I, de Looze MP, van Dieën JH. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting. J Biomech. 2020 Mar 26;102:109486. doi: 10.1016/j.jbiomech.2019.109486
Koopman AS, Toxiri S, Power V, Kingma I, van Dieën JH, Ortiz J, et al. The effect of control strategies for an active back-support exoskeleton on spine loading and kinematics during lifting. J Biomech. 2019 Jun 25;91:14–22. doi: 10.1016/j.jbiomech.2019.04.044
de Vries AW, Krause F, de Looze MP. The effectivity of a passive arm support exoskeleton in reducing muscle activation and perceived exertion during plastering activities. Ergonomics [Internet]. 2021 [cited 2022 Nov 19];64(6):712–21.doi:10.1080/00140139.2020.1868581
Luger T, Bär M, Seibt R, Rimmele P, Rieger MA, Steinhilber B. A passive back exoskeleton supporting symmetric and asymmetric lifting in stoop and squat posture reduces trunk and hip extensor muscle activity and adjusts body posture – A laboratory study. Appl Ergon. 2021 Nov 1;97:103530. doi: 10.1016/j.apergo.2021.103530
Kuber PM, Rashedi E. Product ergonomics in industrial exoskeletons: potential enhancements for workforce efficiency and safety. Theoretical Issues in Ergonomic Science [Internet]. 2020 [cited 2022 Nov 19];22(6):729–52. doi:10.1080/1463922X.2020.1850905
Kim J, Kim J, Jung Y, Lee D, Bae J. A passive upper limb exoskeleton with tilted and offset shoulder joints for assisting overhead tasks. IEEE/ASME Transactions on Mechatronics. 2022. doi: 10.1109/TMECH.2022.3169617
Brahmi B, Saad M, Lam JTAT, Luna CO, Archambault PS, Rahman MH. Adaptive control of a 7-DOF exoskeleton robot with uncertainties on kinematics and dynamics. Eur J Control. 2018 Jul 1;42:77–87. doi: 10.1016/j.ejcon.2018.03.002
ISO. ISO 9241-210: 2019 Ergonomics of humansystem interaction-Part 210: Human-centred design for interactive systems. Switzerland Geneva; 2019.
Weckenborg C, Thies C, Spengler TS. Harmonizing ergonomics and economics of assembly lines using collaborative robots and exoskeletons. J Manuf Syst. 2022 Jan 1;62:681–702. doi: 10.1016/j.jmsy.2022.02.005
Ciccarelli M, Papetti A, Cappelletti F, Brunzini A, Germani M. Combining World Class Manufacturing system and Industry 4.0 technologies to design ergonomic manufacturing equipment. International Journal on Interactive Design and Manufacturing [Internet]. 2022 Mar 1 [cited 2022 Nov 19];16(1):263–79. doi:10.1007/s12008-021-00832-7
Keebler JR, Rosen MA, Sittig DF, Thomas E, Salas E. Human factors and ergonomics in healthcare: Industry demands and a path forward. Human Factors: The Journal of the Human Factors and Ergonomics Society [Internet]. 2022 Jan 8 [cited 2022 Nov 19];64(1):250–8. doi:10.1177/00187208211073623
Bairwa RC, Meena ML, Dangayach GS, Jain R. Prevalence of musculoskeletal disorders among the agricultural workers: A review. Lecture Notes in Networks and Systems [Internet]. 2022 [cited 2022 Nov 19];391:439–46. doi:10.1007/978-3-030-94277-9_38
Howard J, Murashov VV, Lowe BD & Lu L. Industrial Exoskeletons: Need for Intervention Effectiveness Research. American Journal of Industrial Medicine, 2020; 63(3):201-208, doi:10.1002/ajim.23080. Accessed 1 Nov. 2023.
Kalita B, Narayan J, Dwivedy SK. Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review. Int J Soc Robot [Internet]. 2021 Jul 1 [cited 2022 Nov 19];13(4):775–93. doi:10.1007/s12369-020-00662-9
Kapsalyamov A, Jamwal PK, Hussain S, Ghayesh MH. State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access. 2019;7:95075–86. doi: 10.1109/ACCESS.2019.2928010
Shore L, Power V, de Eyto A, O’Sullivan LW. Technology acceptance and user-centred design of assistive exoskeletons for older adults: A commentary. Robotics 2018, Vol 7, Page 3 [Internet]. 2018 Jan 3 [cited 2022 Nov 19];7(1):3. doi: 10.3390/robotics7010003
Kumar K, Shanmugam D, Min SN, Subramaniyam M. Assistive technologies for biologically inspired controller system - a short review assistive technologies for the elderly. Proceedings of the 3rd International Conference on Inventive Systems and Control, ICISC 2019. 2019 Jan 1;292–6. doi: 10.1109/ICISC44355.2019.9036407
Chen B, Zi B, Qin L, Pan Q. State-of-the-art research in robotic hip exoskeletons: A general review. J Orthop Translat. 2020 Jan 1;20:4–13. doi: 10.1016/j.jot.2019.09.006.
Zheng L, Hawke AL, Evans K. Critical review on applications and roles of exoskeletons in patient handling. Int J Ind Ergon. 2022 May 1;89:103290. doi: 10.1016/j.ergon.2022.103290
Pinto-Fernandez D, Torricelli D, Sanchez-Villamanan MDC, Aller F, Mombaur K, Conti R, et al. Performance evaluation of lower limb exoskeletons: a systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2020 Jul 1;28(7):1573–83. doi: 10.1109/TNSRE.2020.2989481
Zhou J, Yang S, Xue Q. Lower limb rehabilitation exoskeleton robot: A review. Advances in Mechanical Engineering [Internet]. 2021 Apr 22 [cited 2022 Nov 19];13(4):1–17. doi:10.1177/16878140211011862
Shin D, Kee KF, Shin EY. Algorithm awareness: Why user awareness is critical for personal privacy in the adoption of algorithmic platforms? Int J Inf Manage. 2022 Aug 1;65. doi: 10.1016/j.ijinfomgt.2022.102494
Meng Q, Zeng Q, Xie Q, Fei C, Kong B, Lu X, et al. Flexible lower limb exoskeleton systems: A review. NeuroRehabilitation. 2022 Jan 1;50(4):367–90. doi: 10.3233/NRE-210300.
du Plessis T, Djouani K, Oosthuizen C. A Review of active hand exoskeletons for rehabilitation and assistance. Robotics 2021, Vol 10, Page 40 [Internet]. 2021 Mar 3 [cited 2022 Nov 19];10(1):40. doi: 10.3390/robotics10010040
Sun Y, Tang Y, Zheng J, Dong D, Chen X, Bai L. From sensing to control of lower limb exoskeleton: a systematic review. Annu Rev Control. 2022 Jan 1;53:83–96. doi: 10.1016/j.arcontrol.2022.04.003
Alqahtani MS, Cooper G, Diver C, Bártolo PJ. Exoskeletons for Lower Limb Applications: A Review. Bio-Materials and Prototyping Applications in Medicine [Internet]. 2021 [cited 2022 Nov 20];139–64. doi:10.1007/978-3-030-35876-1_8
Halder S, Kumar A. An overview of artificial intelligence-based soft upper limb exoskeleton for rehabilitation: a descriptive review. 2023. doi: 10.48550/arXiv.2301.04336
Bogue R. Exoskeletons: a review of recent progress. Industrial Robot. 2022 Jun 30;49(5):813–8. doi: 10.1108/IR-04-2022-0105
Vélez‐guerrero MA, Callejas-cuervo M, Mazzoleni S. Artificial intelligence-based wearable robotic exoskeletons for upper limb rehabilitation: A review. Sensors (Basel). 2021;21(6):2146. doi: 10.3390/s21062146.
Wu Z, Yang M, Xia Y, Wang L. Mechanical structural design and actuation technologies of powered knee exoskeletons: a review. Vol. 13, Applied Sciences (Switzerland). MDPI; 2023. doi: 10.3390/app13021064
Martínez-Mata A, Blanco-Ortega A, Guzmán-Valdivia C, Abúndez-Pliego A, García-Velarde M, Magadán-Salazar A, et al. Engineering design strategies for force augmentation exoskeletons: A general review. Int J Adv Robot Syst [Internet]. 2023 Jan 1 [cited 2023 Feb 10];20(1):172988062211494. doi: 10.1177/17298806221149473
Masengo G, Zhang X, Dong R, Alhassan AB, Hamza K, Mudaheranwa E. Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Neurorobot. 2023; doi: 10.3389/fnbot.2022.913748
Farzaneh M, Farzaneh MM. A review study on the design of an exoskeleton robot. International Journal of Scientific and Technical Research in Engineering (IJSTRE) www.ijstre.com [Internet]. 2021 [cited 2022 Nov 20];6(3). Available from: www.ijstre.com
Armitage L, Turner S, Sreenivasa M. Human-device interface pressure measurement in prosthetic, orthotic and exoskeleton applications: A systematic review. Med Eng Phys. 2021 Nov 1;97:56–69. doi: 10.1016/j.medengphy.2021.09.008
Sanchez-Villamañan MDC, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. Journal of NeuroEngineering and Rehabilitation 2019 16:1 [Internet]. 2019 May 9 [cited 2022 Nov 20];16(1):1–16. doi:10.1186/s12984-019-0517-9
Proud JK, Lai DTH, Mudie KL, Carstairs GL, Billing DC, Garofolini A, et al. Exoskeleton application to military manual handling tasks. Human Factors: The Journal of the Human Factors and Ergonomics Society [Internet]. 2020 Nov 18 [cited 2022 Nov 20];64(3):527–54. doi:10.1177/0018720820957467
Zhu Z, Dutta A, Dai F. Exoskeletons for manual material handling – A review and implication for construction applications. Autom Constr. 2021 Feb 1;122:103493. doi: 10.1016/j.autcon.2020.103493
Massardi S, Rodriguez-Cianca D, Pinto-Fernandez D, Moreno JC, Lancini M, Torricelli D. Characterization and Evaluation of Human–Exoskeleton Interaction Dynamics: A Review. Sensors (Basel). 2022;22(11):3993. doi: 10.3390/s22113993.
Halim I, Saptari A, Abdullah Z, Perumal PA, Zaimi M, Abidin Z, et al. Critical factors influencing user experience on passive exoskeleton application: A review. International Journal of Integrated Engineering [Internet]. 2022 Jun 21 [cited 2022 Nov 20];14(4):89–115. doi: 10.30880/ijie.2022.14.04.009
Basenach L, Renneberg B, Salbach H, Dreier M, Wölfling K. Systematic reviews and meta-analyses of treatment interventions for Internet use disorders: Critical analysis of the methodical quality according to the PRISMA guidelines. J Behav Addict. 2023; 12(1):9-25. doi: 10.1556/2006.2022.00087.
Naf MB, Junius K, Rossini M, Rodriguez-Guerrero C, Vanderborght B, Lefeber D. Misalignment compensation for full human-exoskeleton kinematic compatibility: state of the art and evaluation. Appl Mech Rev [Internet]. 2018 Sep 1 [cited 2022 Nov 20];70(5). doi: 10.1115/1.4042523
de la Tejera JA, Bustamante-Bello R, Ramirez-Mendoza RA, Izquierdo-Reyes J. Systematic review of exoskeletons towards a general categorization model proposal. Applied Sciences 2021, Vol 11, Page 76 [Internet]. 2020 Dec 24 [cited 2022 Nov 20];11(1):76. doi: 10.3390/app11010076
Ishmael MK, Archangeli D, Lenzi T. A powered hip exoskeleton with high torque density for walking, running, and stair ascent. IEEE/ASME Transactions on Mechatronics. 2022; doi: 10.1109/TMECH.2022.3159506
Sarkisian S v., Ishmael MK, Lenzi T. Self-aligning mechanism improves comfort and performance with a powered knee exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2021;29:629–40. doi: 10.1109/TNSRE.2021.3064463
Poliero T, Sposito M, Toxiri S, Natali C di, Iurato M, Sanguineti V, et al. Versatile and non-versatile occupational back-support exoskeletons: A comparison in laboratory and field studies. Wearable Technologies [Internet]. 2021 [cited 2022 Nov 20];2:e12. doi: 10.1017/wtc.2021.9
Bessler J, Prange-Lasonder GB, Schaake L, Saenz JF, Bidard C, Fassi I, et al. Safety assessment of rehabilitation robots: A review identifying safety skills and current knowledge gaps. Front Robot AI. 2021 Mar 22;8:33. doi: 10.3389/frobt.2021.602878
Gorgey AS. Robotic exoskeletons: The current pros and cons. World J Orthop [Internet]. 2018 Sep 9 [cited 2022 Nov 20];9(9):112. doi: 10.5312/wjo.v9.i9.112.
Bach Baunsgaard C, Vig Nissen U, Katrin Brust A, Frotzler A, Ribeill C, Kalke YB, et al. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord 2017 56:2 [Internet]. 2017 Nov 6 [cited 2022 Nov 20];56(2):106–16. doi: 10.1038/s41393-017-0013-7.
Qu X, Qu C, Ma T, Yin P, Zhao N, Xia Y, et al. Effects of an industrial passive assistive exoskeleton on muscle activity, oxygen consumption and subjective responses during lifting tasks. PLoS One [Internet]. 2021 Jan 1 [cited 2022 Nov 20];16(1):e0245629. doi:10.1371/journal.pone.0245629
Huysamen K, de Looze M, Bosch T, Ortiz J, Toxiri S, O’Sullivan LW. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Appl Ergon. 2018 Apr 1;68:125–31. doi: 10.1016/j.apergo.2017.11.004
Hyon SH, Morimoto J, Matsubara T, Noda T, Kawato M. XoR: Hybrid drive exoskeleton robot that can balance. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2011 Dec 6;3975–81. doi: 10.1109/IROS.2011.6048840
Pollock AS, Durward BR, Rowe PJ, Paul JP. What is balance? Clin Rehabil [Internet]. 2016 Jul 1 [cited 2022 Nov 20];14(4):402–6. doi:10.1191/0269215500cr342oa
Alabdulkarim S, Nussbaum MA. Influences of different exoskeleton designs and tool mass on physical demands and performance in a simulated overhead drilling task. Appl Ergon. 2019 Jan 1;74:55–66. doi: 10.1016/j.apergo.2018.08.004
Kim S, Nussbaum MA, Mokhlespour Esfahani MI, Alemi MM, Jia B, Rashedi E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II – “Unexpected” effects on shoulder motion, balance, and spine loading. Appl Ergon. 2018 Jul 1;70:323–30. doi: 10.1016/j.apergo.2018.02.024.
Faraji S, Wu AR, Ijspeert AJ. A simple model of mechanical effects to estimate metabolic cost of human walking. Scientific Reports 2018 8:1 [Internet]. 2018 Jul 20 [cited 2022 Nov 20];8(1):1–12. doi: 10.1038/s41598-018-29429-z.
Lemaire KK, Jaspers RT, Kistemaker DA, Soest AJK van, Laarse WJV der. Metabolic cost of activation and mechanical efficiency of mouse soleus muscle fiber bundles during repetitive concentric and eccentric contractions. Front Physiol. 2019;10(JUN):760. doi: 10.3389/fphys.2019.00760
Hwang J, Kumar Yerriboina VN, Ari H, Kim JH. Effects of passive back-support exoskeletons on physical demands and usability during patient transfer tasks. Appl Ergon. 2021 May 1;93:103373. doi: 10.1016/j.apergo.2021.103373
Nussbaum MA, Lowe BD, Looze M de, Harris-Adamson C, Smets M. An Introduction to the Special Issue on Occupational Exoskeletons. IISE Trans Occup Ergon Hum Factors [Internet]. 2020 Oct 2 [cited 2022 Nov 20];7(3–4):153–62. doi:10.1080/24725838.2019.1709695
Kim S, Madinei S, Alemi MM, Srinivasan D, Nussbaum MA. Assessing the potential for “undesired” effects of passive back-support exoskeleton use during a simulated manual assembly task: Muscle activity, posture, balance, discomfort, and usability. Appl Ergon. 2020 Nov 1;89:103194. doi: 10.1016/j.apergo.2020.103194.
Baltrusch SJ, van Dieën JH, Koopman AS, Näf MB, Rodriguez-Guerrero C, Babič J, et al. SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting. European Journal of Applied Physiology 2019 120:2 [Internet]. 2019 Dec 11 [cited 2022 Nov 20];120(2):401–12. doi:10.1007/s00421-019-04284-6
Zhou T, Xiong C, Zhang J, Hu D, Chen W, Huang X. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton. J Neuroeng Rehabil [Internet]. 2021 Dec 1 [cited 2022 Nov 20];18(1):1–15. doi:10.1186/s12984-021-00893-5
Baltrusch SJ, van Dieën JH, Bruijn SM, Koopman AS, van Bennekom CAM, Houdijk H. The effect of a passive trunk exoskeleton on functional performance and metabolic costs. Biosystems and Biorobotics [Internet]. 2019 [cited 2022 Nov 20];22:229–33. doi:10.1007/978-3-030-01887-0_44
Stirling L, Kelty-Stephen D, Fineman R, Jones MLH, Daniel Park BK, Reed MP, et al. Static, dynamic, and cognitive fit of exosystems for the human operator. Hum Factors [Internet]. 2020 May 1 [cited 2022 Nov 20];62(3):424–40. doi:10.1177/0018720819896898
Naismith LM, Cheung JJH, Sibbald M, Tavares W, Cavalcanti RB, Haji FA, et al. Using cognitive load theory to optimize simulation design. Clinical Simulation: Education, Operations and Engineering. 2019 Jan 1;129–41. doi: 10.1016/B978-0-12-815657-5.00010-3
Maurice P, Čamernik J, Gorjan D, Bornmann J, Tagliapietra L, Latella C, et al. Evaluation of PAEXO, a novel passive exoskeleton for overhead work. Comput Methods Biomech Biomed Engin [Internet]. 2020 May 1 [cited 2022 Nov 20];22(sup1):S448–50. doi: 10.1080/10255842.2020.1714977
Zhu Y, Weston EB, Mehta RK, Marras WS. Neural and biomechanical tradeoffs associated with human-exoskeleton interactions. Appl Ergon. 2021 Oct 1;96:103494. doi: 10.1016/j.apergo.2021.103494
Read E, Woolsey C, McGibbon CA, O’Connell C. Physiotherapists’ experiences using the ekso bionic exoskeleton with patients in a neurological rehabilitation hospital: A qualitative study. Rehabil Res Pract. 2020;2020. doi: 10.1155/2020/2939573
Bequette B, Norton A, Jones E, Stirling L. Physical and cognitive load effects due to a powered lower-body exoskeleton. Human Factors: The Journal of the Human Factors and Ergonomics Society [Internet]. 2020 Mar 23 [cited 2022 Nov 20];62(3):411–23. doi:10.1177/0018720820907450
la Bara LMA, Meloni L, Giusino D, Pietrantoni L. Assessment methods of usability and cognitive workload of rehabilitative exoskeletons: a systematic review. Applied Sciences 2021, Vol 11, Page 7146 [Internet]. 2021 Aug 2 [cited 2022 Nov 20];11(15):7146. doi: 10.3390/app11157146
Dragusanu M, Iqbal MZ, Baldi TL, Prattichizzo D, Malvezzi M. Design, development, and control of a hand/wrist exoskeleton for rehabilitation and training. IEEE Transactions on Robotics. 2022 Jun 1;38(3):1472–88. doi: 10.1109/TRO.2022.3172510
Gao M, Wang Z, Pang Z, Sun J, Li J, Li S, et al. Electrically driven lower limb exoskeleton rehabilitation robot based on anthropomorphic design. Machines 2022, Vol 10, Page 266 [Internet]. 2022 Apr 7 [cited 2022 Nov 20];10(4):266. doi: 10.3390/machines10040266
Farris DJ, Harris DJ, Rice HM, Campbell J, Weare A, Risius D, et al. A systematic literature review of evidence for the use of assistive exoskeletons in defence and security use cases. Ergonomics [Internet]. 2022 [cited 2022 Nov 20]; doi:10.1080/00140139.2022.2059106
Leova L, Cubanova S, Kutilek P, Volf P, Hejda J, Hybl J, et al. Current state and design recommendations of exoskeletons of lower limbs in military applications. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet]. 2022 [cited 2022 Nov 20];13207 LNCS:452–63. doi:10.1007/978-3-030-98260-7_29
Miller DE, Tan GR, Farina EM, Sheets-Singer AL, Collins SH. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons. J Neuroeng Rehabil [Internet]. 2022 Dec 1 [cited 2022 Nov 20];19(1):1–15. doi:10.1186/s12984-022-01023-5
Park H, Kim S, Nussbaum MA, Srinivasan D. Effects of using a whole-body powered exoskeleton during simulated occupational load-handling tasks: A pilot study. Appl Ergon. 2022 Jan 1;98:103589. doi: 10.1016/j.apergo.2021.103589
Pinho JP, Forner-Cordero A. Shoulder muscle activity and perceived comfort of industry workers using a commercial upper limb exoskeleton for simulated tasks. Appl Ergon. 2022 May 1;101:103718. doi: 10.1016/j.apergo.2022.103718.
McFarland TC, McDonald AC, Whittaker RL, Callaghan JP, Dickerson CR. Level of exoskeleton support influences shoulder elevation, external rotation and forearm pronation during simulated work tasks in females. Appl Ergon. 2022 Jan 1;98:103591. doi: 10.1016/j.apergo.2021.103591
Sposito M, Poliero T, di Natali C, Semprini M, Barresi G, Laffranchi M, et al. Exoskeletons in elderly healthcare. Studies in Computational Intelligence [Internet]. 2022 [cited 2022 Nov 20];1011:353–74. doi:10.1007/978-981-16-8488-3_17
Dahmen C, Hölzel C, Wöllecke F, Constantinescu C. Approach of optimized planning process for exoskeleton centered workplace design. Procedia CIRP. 2018 Jan 1;72:1277–82. doi: 10.1016/j.procir.2018.03.185
Baltrusch SJ, Houdijk H, van Dieën JH, Kruif JTCM de. Passive trunk exoskeleton acceptability and effects on self-efficacy in employees with low-back pain: a mixed method approach. J Occup Rehabil [Internet]. 2021 Mar 1 [cited 2022 Nov 20];31(1):129–41. doi:10.1007/s10926-020-09891-1
Joudzadeh P, Hadi A, Tarvirdizadeh B, Borooghani D, Alipour K. Design and fabrication of a lower limb exoskeleton to assist in stair ascending. Industrial Robot. 2019 May 7;46(2):290–9. doi: 10.1108/IR-09-2018-0199
Ralfs L, Hoffmann N, Weidner R. Method and test course for the evaluation of industrial exoskeletons. Applied Sciences 2021, Vol 11, Page 9614 [Internet]. 2021 Oct 15 [cited 2022 Nov 20];11(20):9614. doi: 10.3390/app11209614
Li Z, Ren Z, Zhao K, Deng C, Feng Y. Human-cooperative control design of a walking exoskeleton for body weight support. IEEE Trans Industr Inform. 2020 May 1;16(5):2985–96. doi: 10.1109/TII.2019.2900121
Christensen S, Rafique S, Bai S. Design of a powered full-body exoskeleton for physical assistance of elderly people. Int J Adv Robot Syst [Internet]. 2021 Nov 10 [cited 2022 Nov 20];18(6). doi:10.1177/17298814211053534
Cempini M, Cortese M, Vitiello N. A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes. IEEE/ASME Transactions on Mechatronics. 2015 Apr 1;20(2):705–16. doi: 10.1109/TMECH.2014.2315528
Chishty HA, Zonnino A, Farrens AJ, Sergi F. Kinematic compatibility of a wrist robot with cable differential actuation: effects of misalignment compensation via passive joints. IEEE Trans Med Robot Bionics. 2021 Nov 1;3(4):970–9. doi: 10.1109/TMRB.2021.3123528
Liu J, Li H, Chen W, Wang J. A novel design of pressure sensing foot for lower limb exoskeleton. Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications, ICIEA 2013. 2013;1517–20. doi: 10.1109/ICIEA.2013.6566608
Lian P, He Y, Ma Y, Liu J, Wu X. Adaptive admittance control of human-exoskeleton system using RNN optimization. 2021 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2021. 2021 Jul 15;584–9. doi: 10.1109/RCAR52367.2021.9517398
Rudd G, Daly L, Jovanovic V, Cuckov F. A Low-cost soft robotic hand exoskeleton for use in therapy of limited hand–motor function. Applied Sciences 2019, Vol 9, Page 3751 [Internet]. 2019 Sep 8 [cited 2022 Nov 20];9(18):3751. doi: 10.3390/app9183751
Wu Q, Wang X, Du F, Zhang X. Design and control of a powered hip exoskeleton for walking assistance. Int J Adv Robot Syst [Internet]. 2015 Mar 10 [cited 2022 Nov 20];12. doi:10.5772/59757
Marquardt C, Weiner P, Dezman M, Asfour T. Embedded barometric pressure sensor unit for force myography in exoskeletons. In: IEEE-RAS International Conference on Humanoid Robots. IEEE Computer Society; 2022. p. 67–73. doi: 10.1109/Humanoids53995.2022.10000204
Tamez-Duque J, Cobian-Ugalde R, Kilicarslan A, Venkatakrishnan A, Soto R, Contreras-Vidal JL. Real-time strap pressure sensor system for powered exoskeletons. Sensors 2015, Vol 15, Pages 4550-4563 [Internet]. 2015 Feb 16 [cited 2022 Nov 20];15(2):4550–63. doi: 10.3390/s150204550.
Steinhilber B, Seibt R, Rieger MA, Luger T. Postural control when using an industrial lower limb exoskeleton: impact of reaching for a working tool and external perturbation.Hum Factors. 2022;64(4):635-648. doi: 10.1177/0018720820957466
Takahashi N, Takahashi H, Koike H. Soft exoskeleton glove enabling force feedback for human-like finger posture control with 20 degrees of freedom. 2019 IEEE World Haptics Conference, WHC 2019. 2019 Jul 1;217–22. doi: 10.1109/WHC.2019.8816142
Takahashi N, Furuya S, Koike H. Soft Exoskeleton Glove with Human Anatomical Architecture: Production of Dexterous Finger Movements and Skillful Piano Performance. IEEE Trans Haptics. 2020 Oct 1;13(4):679–90. doi: 10.1109/TOH.2020.2993445
Paterna M, Magnetti Gisolo S, de Benedictis C, Muscolo GG, Ferraresi C. A passive upper-limb exoskeleton for industrial application based on pneumatic artificial muscles. Mechanical Sciences. 2022 Apr 27;13(1):387–98. doi: 10.5194/ms-13-387-2022
Zhao Z, Hao L, Liu M, Gao H, Li X. Prescribed performance model-free adaptive terminal sliding mode control for the pneumatic artificial muscles elbow exoskeleton. Journal of Mechanical Science and Technology 2021 35:7 [Internet]. 2021 Jun 29 [cited 2022 Nov 20];35(7):3183–97. doi:10.1007/s12206-021-0639-4
Junius K, Lefeber N, Swinnen E, Vanderborght B, Lefeber D. Metabolic effects induced by a kinematically compatible hip exoskeleton during STS. IEEE Trans Biomed Eng. 2018 Jun 1;65(6):1399–409. doi: 10.1109/TBME.2017.2754922
Ortiz J, Rocon E, Power V, de Eyto A, O’Sullivan L, Wirz M, et al. XoSoft - A vision for a soft modular lower limb exoskeleton. Biosystems and Biorobotics [Internet]. 2017 [cited 2022 Nov 20];16:83–8. doi:10.1007/978-3-319-46532-6_14
Mooney LM, Rouse EJ, Herr HM. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J Neuroeng Rehabil [Internet]. 2014 May 9 [cited 2022 Nov 20];11(1):1–11. doi:10.1186/1743-0003-11-80
Leng Y, Huang G, Ma L, Qian Y, Chen X, Zhang K, et al. A Lightweight, Integrated and Portable Force-Controlled Ankle Exoskeleton for Daily Walking Assistance. 2021 27th International Conference on Mechatronics and Machine Vision in Practice, M2VIP 2021. 2021;42–7. doi: 10.1109/M2VIP49856.2021.9665002
Seo K, Lee J, Lee Y, Ha T, Shim Y. Fully autonomous hip exoskeleton saves metabolic cost of walking. Proc IEEE Int Conf Robot Autom. 2016 Jun 8;2016-June:4628–35. doi: 10.1109/ICRA.2016.7487663
Nassour J, Zhao G, Grimmer M. Soft pneumatic elbow exoskeleton reduces the muscle activity, metabolic cost and fatigue during holding and carrying of loads. Scientific Reports 2021 11:1 [Internet]. 2021 Jun 15 [cited 2022 Nov 20];11(1):1–14. doi: doi: 10.1038/s41598-021-91702-5.
Malcolm P, Galle S, Derave W, de Clercq D. Bi-articular knee-ankle-foot exoskeleton produces higher metabolic cost reduction than weight-matched mono-articular exoskeleton. Front Neurosci. 2018 Mar 2;12(MAR):69. doi: 10.3389/fnins.2018.00069
Karacan K, Meyer JT, Bozma HI, Gassert R, Samur E. An environment recognition and parameterization system for shared-control of a powered lower-limb exoskeleton. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. 2020 Nov 1;2020-November:623–8. doi: 10.1109/BioRob49111.2020.9224407
Badesa FJ, Diez JA, Catalan JM, Trigili E, Cordella F, Nann M, et al. Physiological responses during hybrid BNCI control of an upper-limb exoskeleton. Sensors 2019, Vol 19, Page 4931 [Internet]. 2019 Nov 12 [cited 2022 Nov 20];19(22):4931. doi: 10.3390/s19224931
Asgher U, Khan MJ, Asif Nizami MH, Khalil K, Ahmad R, Ayaz Y, et al. Motor training using mental workload (MWL) with an assistive soft exoskeleton system: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain–Machine Interface (BMI). Front Neurorobot. 2021 Mar 18;15:17. doi: 10.3389/fnbot.2021.605751.
Lee K, Liu D, Perroud L, Chavarriaga R, Millán J del R. A brain-controlled exoskeleton with cascaded event-related desynchronization classifiers. Rob Auton Syst. 2017 Apr 1;90:15–23. doi:10.1016/j.robot.2016.10.005
Pavón-Pulido N, López-Riquelme JA, Feliú-Batlle JJ. IoT Architecture for smart control of an exoskeleton robot in rehabilitation by using a natural user interface based on gestures. Journal of Medical Systems 2020 44:9 [Internet]. 2020 Jul 23 [cited 2022 Nov 20];44(9):1–10. doi:10.1007/s10916-020-01602-w
Schewe F, Vollrath M. Ecological interface design effectively reduces cognitive workload – The example of HMIs for speed control. Transp Res Part F Traffic Psychol Behav. 2020 Jul 1;72:155–70. doi: 10.1016/j.trf.2020.05.009
Baltrusch SJ, Houdijk H, van Dieën JH, van Bennekom CAM, de Kruif AJTCM. Perspectives of end users on the potential use of trunk exoskeletons for people with low-back pain: a focus group study. Human Factors: The Journal of the Human Factors and Ergonomics Society [Internet]. 2020 Jan 8 [cited 2022 Nov 20];62(3):365–76. doi:10.1177/0018720819885788
Cha JS, Monfared S, Stefanidis D, Nussbaum MA, Yu D. Supporting surgical teams: identifying needs and barriers for exoskeleton implementation in the operating room. Human Factors: The Journal of the Human Factors and Ergonomics Society [Internet]. 2019 Oct 8 [cited 2022 Nov 20];62(3):377–90. doi:10.1177/0018720819879271
Abdullah Z, Halim I, Maidin S, Md Ghazaly M, Amran Mohd Ali M., et al. Design and development of a flexible wearable sit-stand passive exoskeleton using quality function deployment. Proceedings of Mechanical Engineering Research Day 2020;308–9. Available from: https://www3.utem.edu.my/care/proceedings/merd20/pdf/08_Mechanical_Design_and_Optimization/133-p308_309.pdf
Aibin Z, Shengli H, Ziyue L, Yangyang L. Lower limb rehabilitation robot design with dual customized design: Customized gait and customized exoskeleton. 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2016. 2016 Oct 21;572–5. doi: 10.1109/URAI.2016.7625782
Dahmen C, Constantinescu C. Methodology of employing exoskeleton technology in manufacturing by considering time-related and ergonomics influences. Applied Sciences 2020, Vol 10, Page 1591 [Internet]. 2020 Feb 27 [cited 2022 Nov 20];10(5):1591. doi: 10.3390/app10051591
Sposito M, Natali C di, Toxiri S, Caldwell DG, Momi E de, Ortiz J. Exoskeleton kinematic design robustness: An assessment method to account for human variability. Wearable Technologies [Internet]. 2020 [cited 2022 Nov 20];1:e7. doi: 10.1017/wtc.2020.7
Pesenti M, Invernizzi G, Mazzella J, Bocciolone M, Pedrocchi A, Gandolla M. IMU-based human activity recognition and payload classification for low-back exoskeletons. Sci Rep. 2023 Dec 1;13(1). doi; doi: 10.1038/s41598-023-28195-x.
Jacob S, Alagirisamy M, Xi C, Balasubramanian V, Srinivasan R, R. P, et al. AI and IoT-Enabled smart exoskeleton system for rehabilitation of paralyzed people in connected communities. IEEE Access. 2021;9:80340–50. doi: 10.1109/ACCESS.2021.3083093
Shin D, Zhong B, Biocca FA. Beyond user experience: What constitutes algorithmic experiences? Int J Inf Manage. 2020 Jun 1;52. doi:10.1016/j.ijinfomgt.2019.102061