Challenge of New Norms: Obesity amid COVID-19 Pandemic

Main Article Content

Ubaidah Naim Taraq Naem Zia
Ii Li Lee
Siti Syariah Mamat

Abstract

COVID-19 pandemic aggravated the global public health system, which is already overwhelmed by the increasing statistics ofcomorbidities and burden due to obesity. The number of individuals with obesity and obesity-associated diseases are rising in manyregions that could attribute to the growing obesogenic environment and the lockdown implemented to curb COVID-19. This reviewfocuses on the aspects of the obesity epidemic, chronic inflammatory effects of obesity, positive outcomes of obesity interventions and the worsening effects observed in obese COVID-19 patients. The chronic inflammatory effects of obesity are apparent by theincrease of pro-inflammatory signals by immune cells in the adipose tissue and reactive species populations. The reduction of antioxidants exacerbates the effects of oxidative stress on genomic and tissue levels. The public must be made aware of theimportance of practising a healthier lifestyle, even more now as we are fighting the COVID-19 pandemic.

Downloads

Download data is not yet available.

Article Details

How to Cite
Taraq Naem Zia, U. N., Lee, I. L., & Syariah Mamat, S. (2022). Challenge of New Norms: Obesity amid COVID-19 Pandemic. Malaysian Journal of Medicine and Health Sciences, 18(5), 208–214. https://doi.org/10.47836/mjmhs18.5.28
Section
Review Article

References

Yanes Cardozo LL, Romero DG. Novel biomarkers of childhood and adolescent obesity. Hypertens Res. 2021;44(8):1030–3. doi:10.1038/s41440- 021-00651-z

Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23(2):120–33. doi: 10.1038/s41576-021-00414-z.

Włodarczyk M, Nowicka G. Obesity, DNA damage, and development of obesity-related diseases. Int J Mol Sci. 2019;20(5). doi: 10.3390/ ijms20051146.

Defining Adult Overweight & Obesity | Overweight & Obesity | CDC [Internet]. [cited 2021 Nov 11]. Available from: https://www.cdc.gov/obesity/ adult/defining.html

Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368(9548):1681–8. doi: 10.1016/S0140-6736(06)69703-1.

IDF Diabetes Atlas Group. IDF Diabetes Atlas Fourth Edition [Internet]. Idf Diabetes Atlas. 2009. 1–527 p. Available from: https://diabetesatlas.org/ atlas/fourth-edition/

Tremmel M, Gerdtham UG, Nilsson PM, Saha S. Economic burden of obesity: A systematic literature review. Int J Environ Res Public Health. 2017;14(4):1–18. doi: 10.3390/ijerph14040435.

Swinburn B, Egger G, Raza F. Dissecting obesogenic environments: The development and application of a framework for identifying and prioritizing environmental interventions for obesity. Prev Med (Baltim). 1999;29(6 I):563–70. doi: 10.1006/ pmed.1999.0585.

Kirk SFL, Penney TL, McHugh TLF. Characterizing the obesogenic environment: The state of the evidence with directions for future research. Obes Rev. 2010;11(2):109–17. doi: 10.1111/j.1467- 789X.2009.00611.x.

Clemmensen C, Petersen MB, Sørensen TIA. Will the COVID-19 pandemic worsen the obesity epidemic? Nat Rev Endocrinol [Internet]. 2020;16(9):469–70. doi:10.1038/s41574-020-0387-z

Aktug ZB, Demir NA. An exercise prescription for covid-19 pandemic. Pakistan J Med Sci. 2020;36(7):1732–6. doi: 10.12669/ pjms.36.7.2929.

Pellegrini M, Ponzo V, Rosato R, Scumaci E, Goitre I, Benso A, et al. Changes in weight and nutritional habits in adults with obesity during the “lockdown” period caused by the COVID-19 virus emergency. Nutrients. 2020;12(7):1–11. doi: 10.3390/nu12072016.

Jackson SE, Llewellyn CH, Smith L. The obesity epidemic – Nature via nurture: A narrative review of high-income countries. SAGE Open Med. 2020;8:205031212091826. doi: 10.1177/2050312120918265.

Izquierdo AG, Crujeiras AB, Casanueva FF, Carreira MC. Leptin, obesity, and leptin resistance: where are we 25 years later? Nutrients. 2019;11(11):1–11. doi: 10.3390/nu11112704.

Romano M. Inflammation resolution: Does the bone marrow have a say? Am J Hematol. 2008;83(6):435–6. doi: 10.1002/ajh.21202.

Feuerstein, G.Z., Libby, P., Mann, D.L. (2003). Inflammation — A new frontier in cardiac disease and therapeutics. In: Feuerstein, G.Z., Libby, P., Mann, D.L. (eds) Inflammation and Cardiac Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3- 0348-8047-3_1

Seki H, Tani Y, Arita M. Omega-3 PUFA derived anti-inflammatory lipid mediator resolvin E1. Prostaglandins Other Lipid Mediat. 2009;89(3–4):126–30. doi: 10.1016/j.prostaglandins.2009.03.002

Karczewski J, Śledzińska E, Baturo A, Jończyk I, Maleszko A, Samborski P, et al. Obesity and inflammation. Eur Cytokine Netw. 2018;29(3):83–94. doi:10.1684/ecn.2018.0415

Schachter J, Martel J, Lin CS, Chang CJ, Wu TR, Lu CC, et al. Effects of obesity on depression: A role for inflammation and the gut microbiota. Brain Behav Immun [Internet]. 2018;69:1–8. doi:10.1016/j. bbi.2017.08.026

Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol [Internet]. 2015;6:472–85. doi:10.1016/j.redox.2015.09.005

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. doi: 10.1172/ JCI19246.

Haase J, Weyer U, Immig K, Klöting N, Blüher M, Eilers J, et al. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia. 2014;57(3):562–71. doi: 10.1007/s00125-013-3139-y

Jing Y, Wu F, Li D, Yang L, Li Q, Li R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol. 2018;461:256–64. doi: 10.1016/j. mce.2017.09.025

Vachharajani V, Granger DN. Adipose tissue: A motor for the inflammation associated with obesity. IUBMB Life. 2009;61(4):424–30. doi: 10.1002/iub.169.

Cui X, Gong J, Han H, He L, Teng Y, Tetley T, et al. Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimens. J Thorac Dis. 2018;10(5):3088–197. doi: 10.21037/jtd.2018.05.92. Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346.

Ayala A, Muñoz MF, Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med Cell Longev. 2014;1–31. doi: 10.1155/2014/360438.

Makki K, Froguel P, Wolowczuk I. Adipose Tissue in Obesity-Related Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflamm. 2013;2013:1–12. doi: 10.1155/2013/139239.

University of Oslo. Being overweight causes hazardous inflammations [Internet]. ScienceDaily. 2014. Available from: https://www.sciencedaily. com/releases/2014/08/140825084836.htm

Pahwa R, Singh A, Adams-Huet B, Devaraj S, Jialal I. Increased inflammasome activity in subcutaneous adipose tissue of patients with metabolic syndrome. Diabetes Metab Res Rev. 2021;37(3). doi: 10.1002/dmrr.3383

Francenia Santos-Sánchez N, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B. Antioxidant Compounds and Their Antioxidant Mechanism. Antioxidants. 2019;1–28. doi:10.5772/intechopen.85270

Colak E, Pap D, Nikolić L, Vicković S. The impact of obesity to antioxidant defense parameters in adolescents with increased cardiovascular risk Uticaj gojaznosti na parametre antioksidantne za tite kod adolescenata sa povećanim kardiovaskularnim rizikom. J Med Biochem. 2020;39(3):346-354. doi: 10.2478/jomb-2019-0051.

Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González Á, Esquivel-Chirino C, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12(5):3117–32. doi: 10.3390/ijms12053117.

Tan M, He FJ, MacGregor GA. Obesity and covid-19: The role of the food industry. BMJ. 2020;369:9–10. doi: 10.1136/bmj.m2237.

Sattar N, McInnes IB, McMurray JJV. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms. Circulation. 2020;4–6. doi: 10.1161/CIRCULATIONAHA.120.047659

Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ. 2020;369. doi: 10.1136/bmj.m1966.

Yang J, Hu J, Zhu C. Obesity aggravates COVID-19: A systematic review and meta-analysis. J Med Virol. 2021;93(1):257–61. doi: 10.1002/jmv.26237

Bornstein SR, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld AL, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol [Internet]. 2020;8(6):546–50. doi:10.1016/S2213-8587(20)30152-2

Tabatabaei-Malazy O, Abdollahi M, Larijani B. Beneficial effects of anti-oxidative herbal medicines in diabetic patients infected with covid-19: A hypothesis. Diabetes, Metab Syndr Obes Targets Ther. 2020;13:3113–6. doi: 10.2147/DMSO. S264824.

Kruglikov IL, Scherer PE. The role of adipocytes and adipocyte-like cells in the severity of COVID-19 infections. Obesity. 2016;28(7):1187–90. doi: 10.1002/oby.22856.

Kassir R. Risk of COVID-19 for patients with obesity. Obes Rev. 2020;21(6):10–1. doi:10.1111/ obr.13034

Green WD, Beck MA. Obesity impairs the adaptive immune response to influenza virus. Ann Am Thorac Soc. 2017;14(November):S406–9. doi: 10.1513/AnnalsATS.201706-447AW.

Aghili SMM, Ebrahimpur M, Arjmand B, Shadman Z, Pejman Sani M, Qorbani M, et al. Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: a review and meta-analysis. Int J Obes. 2021;45(5):998–1016. doi:10.1038/s41366-021-00776-8

Montefusco L, D’Addio F, Loretelli C, Ben Nasr M, Garziano M, Rossi A, et al. Anti-inflammatory effects of diet and caloric restriction in metabolic syndrome. J Endocrinol Invest. 2021;44(11):2407–

doi:10.1007/s40618-021-01547-y

Di Domenico M, Pinto F, Quagliuolo L, Contaldo M, Settembre G, Romano A, et al. The Role of Oxidative Stress and Hormones in Controlling Obesity. Front Endocrinol (Lausanne). 2019;10(August):1–13. doi: 10.3389/fendo.2019.00540

Alberca RW, Oliveira L de M, Branco ACCC, Pereira NZ, Sato MN. Obesity as a risk factor for COVID-19: an overview. Crit Rev Food Sci Nutr. 2021 Jul 20;61(13):2262–76. doi: 10.1080/10408398.2020.1775546.

Yu W, Rohli KE, Yang S, Jia P. Impact of obesity on COVID-19 patients. J Diabetes Complications. 2021;35(3):107817. doi:10.1016/j. jdiacomp.2020.107817

Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin Nutr. 2015;34(6):1101–8. doi:10.1016/j. clnu.2014.12.019

Tavakol Z, Ghannadi S, Tabesh MR, Halabchi F, Noormohammadpour P, Akbarpour S, et al. Relationship between physical activity, healthy lifestyle and COVID-19 disease severity; a cross- sectional study. Z Gesundh Wiss 2021;1–9. doi: 10.1007/s10389-020-01468-9

Brand R, Timme S, Nosrat S. When Pandemic Hits: Exercise Frequency and Subjective Well- Being During COVID-19 Pandemic. Front Psychol. 2020;11(September):1–10. doi: 10.3389/fpsyg.2020.570567

Middelbeek RJW, Motiani P, Brandt N, Nigro P, Zheng J, Virtanen KA, et al. Exercise intensity regulates cytokine and klotho responses in men. Nutr Diabetes. 2021;11(1). doi:10.1038/s41387- 020-00144-x

Improta-Caria AC, Soci ÚPR, Pinho CS, Júnior RA, de Sousa RAL, Bessa TCB. Physical exercise and immune system: Perspectives on the COVID-19 pandemic. Rev Assoc Med Bras. 2021;67(Suppl 1):102–7. doi: 10.1590/1806-9282.67. Suppl1.20200673

Suzuki K, Hayashida H. Effect of Exercise Intensity on Cell-Mediated Immunity. Sports. 2021;9(1):1–

doi: 10.3390/sports9010008.