Understanding Mechanisms of Sinomenine in Morphine Addiction Treatment Using Network Pharmacology and Molecular Docking Approaches

Main Article Content

Muhammad Arif Imran Mohd Ali
Aida Azlina Ali
Sandra Maniam
Muhammad Harith Zulkifli

Abstract

Introduction: Sinomenine, derived from Sinomenium acutum, has been reported as a potential treatment for morphine addiction but its mechanisms are poorly understood. Hence this study was conducted to investigate the potential mechanisms underlying sinomenine effects on morphine addiction. Materials and methods: Potential protein targets for sinomenine were predicted using SwissTarget Prediction and PharmMapper while morphine addiction targets were collected from DisGeNet and GeneCards databases. Protein-protein interaction was examined using GeneMANIA web server while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted using ShinyGO online tool. Topological network analysis was performed using Cytoscape to measure the degree centrality, betweenness centrality and closeness centrality values while molecular docking analysis was done using AutoDock Vina to determine the binding energies and interactions. Results: A total of 15 sinomenine targets were identified to be involved. Among the identified targets, 37.94% shared protein domains and 19.64% displayed physical interactions. Relevant biological processes, molecular functions, cellular components and signalling pathways were identified involving G-protein coupled opioid receptor signalling pathways and activities, integral component of presynaptic membrane and mitophagy. Molecular docking suggested that the substituted aromatic ring of sinomenine plays important roles in the binding to the protein targets. The top five most significant protein targets were identified based on the binding energies and degree centrality values, namely OPRD1, OPRK1, NOS1, OPRM1 and SRC. Conclusion: Sinomenine interacted with various protein targets and pathways which can potentially treat morphine addiction mainly via opioid receptors and their signalling pathways.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mohd Ali, M. A. I., Ali, A. A., Maniam, S., & Zulkifli, M. H. (2025). Understanding Mechanisms of Sinomenine in Morphine Addiction Treatment Using Network Pharmacology and Molecular Docking Approaches. Malaysian Journal of Medicine and Health Sciences, 21(1), 141–150. https://doi.org/10.47836/mjmhs.21.1.18
Section
Original Articles

References

Listos J, Lupina M, Talarek S, Mazur A, Orzelska-Gorka J, Kotlinska J. The Mechanisms Involved in Morphine Addiction: An Overview. Int J Mol Sci. 2019;20(17). doi:10.3390/ijms20174302

UNODC. World Drug Report 2022. 2022. Available from: https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2022.html

Fan W, Wang H, Zhang Y, Loh HH, Law PY, Xu C. Morphine regulates adult neurogenesis and contextual memory extinction via the PKCepsilon/Prox1 pathway. Neuropharmacology. 2018;141:126-38. doi:10.1016/j.neuropharm.2018.08.031

Li X, Xie B, Lu Y, Yang H, Wang J, Yu F, et al. Transcriptomic Analysis of Long Non-coding RNA-MicroRNA-mRNA Interactions in the Nucleus Accumbens Related to Morphine Addiction in Mice. Front Psychiatry. 2022;13:915398. doi:10.3389/fpsyt.2022.915398

Monfils MH, Holmes EA. Memory boundaries: opening a window inspired by reconsolidation to treat anxiety, trauma-related, and addiction disorders. Lancet Psychiatry. 2018;5(12):1032-42. doi:10.1016/S2215-0366(18)30270-0

Xu M, Liu L, Qi C, Deng B, Cai X. Sinomenine Versus NSAIDs for the Treatment of Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Planta Medica. 2008;74(12):1423-9. doi:10.1055/s-2008-1081346

Jiang W, Fan W, Gao T, Li T, Yin Z, Guo H, et al. Analgesic Mechanism of Sinomenine against Chronic Pain. Pain Res Manag. 2020;2020:1876862. doi:10.1155/2020/1876862

Zhang M-W, Wang X-H, Shi J, Yu J-G. Sinomenine in Cardio-Cerebrovascular Diseases: Potential Therapeutic Effects and Pharmacological Evidences. Frontiers in Cardiovascular Medicine. 2021;8. doi:10.3389/fcvm.2021.749113

Gao T, Shi T, Wiesenfeld-Hallin Z, Li T, Jiang JD, Xu XJ. Sinomenine facilitates the efficacy of gabapentin or ligustrazine hydrochloride in animal models of neuropathic pain. Eur J Pharmacol. 2019;854:101-8. doi:10.1016/j.ejphar.2019.03.061

Hong H, Lu X, Lu Q, Huang C, Cui Z. Potential therapeutic effects and pharmacological evidence of sinomenine in central nervous system disorders. Front Pharmacol. 2022;13:1015035. doi:10.3389/fphar.2022.1015035

Ou J, Zhou Y, Li C, Chen Z, Li H, Fang M, et al. Sinomenine Protects Against Morphine Dependence through the NMDAR1/CAMKII/CREB Pathway: A Possible Role of Astrocyte-Derived Exosomes. Molecules. 2018;23(9). doi:10.3390/molecules23092370

Fang M, Li J, Zhu D, Luo C, Li C, Zhu C, et al. Effect of Sinomenine on the Morphine-Dependence and Related Neural Mechanisms in Mice. Neurochem Res. 2017;42(12):3587-96. doi:10.1007/s11064-017-2407-5

Chen Z, Zhijie C, Yuting Z, Shilin X, Qichun Z, Jinying O, et al. Antibiotic-Driven Gut Microbiome Disorder Alters the Effects of Sinomenine on Morphine-Dependent Zebrafish. Front Microbiol. 2020;11:946. doi:10.3389/fmicb.2020.00946

Liu Z, Zheng J-F, Yang L-Q, Yi L, Hu B. Effects of sinomenine on NO/nNOS system in cerebellum and spinal cord of morphine-dependent and withdrawal mice. Acta Physiologica Sinica. 2006;59:285-92. Available from: https://actaps.sinh.ac.cn/article.php?id=6935

Gao WJ, Liu JX, Xie Y, Luo P, Liu ZQ, Liu L, et al. Suppression of macrophage migration by down-regulating Src/FAK/P130Cas activation contributed to the anti-inflammatory activity of sinomenine. Pharmacol Res. 2021;167:105513. doi:10.1016/j.phrs.2021.105513

Ramazi S, Fahanik-Babaei J, Mohamadi-Zarch SM, Tashakori-Miyanroudi M, Nourabadi D, Nazari-Serenjeh M, et al. Neuroprotective and anticonvulsant effects of sinomenine in kainate rat model of temporal lobe epilepsy: Involvement of oxidative stress, inflammation and pyroptosis. J Chem Neuroanat. 2020;108:101800. doi:10.1016/j.jchemneu.2020.101800

Yu Z, Wu Z, Wang Z, Wang Y, Zhou M, Li W, et al. Network-Based Methods and Their Applications in Drug Discovery. Journal of Chemical Information and Modeling. 2023. doi:10.1021/acs.jcim.3c01613

Liu X, Chen H, Chen X, Wu P, Zhang J. Identification of Potential Targets and Mechanisms of Sinomenine in Allergic Rhinitis Treatment Based on Network Pharmacology and Molecular Docking. Critical Reviews in Immunology. 2023;43:1-10. doi:10.1615/CritRevImmunol.2023049479

Sun L, Chen Z, Ni Y, He Z. Network pharmacology-based approach to explore the underlying mechanism of sinomenine on sepsis-induced myocardial injury in rats. Front Pharmacol. 2023;14:1138858. doi:10.3389/fphar.2023.1138858

Tian J, Yang C, Wang Y, Zhou C. Evaluation of the Mechanism of Sinomenii Caulis in Treating Ulcerative Colitis based on Network Pharmacology and Molecular Docking. Curr Comput Aided Drug Des. 2024;20(3):195-207. doi:10.2174/1573409919666230420083102

Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017;45(W1):W356-W60. doi:10.1093/nar/gkx374

Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357-W64. doi:10.1093/nar/gkz382

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1):D1373-D80. doi:10.1093/nar/gkac956

Kolberg L, Raudvere U, Kuzmin I, Adler P, Vilo J, Peterson H. g:Profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 2023;51(W1):W207-W12. doi:10.1093/nar/gkad347

Pinero J, Ramirez-Anguita JM, Sauch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):D845-D55. doi:10.1093/nar/gkz1021

Safran M, Rosen N, Twik M, BarShir R, Stein TI, Dahary D, et al. The GeneCards Suite. Practical Guide to Life Science Databases. 2021. p. 27-56. doi:10.1007/978-981-16-5812-9_2

Oliveros JC. Venny. An interactive tool for comparing lists with Venn's diagrams. 2007-2015. Available from: https://bioinfogp.cnb.csic.es/tools/venny/index.html

Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(Web Server issue):W214-20. doi:10.1093/nar/gkq537

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. doi:10.1101/gr.1239303

Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628-9. doi:10.1093/bioinformatics/btz931

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Research. 2000;28:235-42. doi:10.1093/nar/28.1.235.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-91. doi:10.1002/jcc.21256

Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021;61(8):3891-8. doi:10.1021/acs.jcim.1c00203

Lin Y, Li H, Peng J, Li C, Zhu C, Zhou Y, et al. Decrease of morphine-CPP by sinomenine via mediation of tyrosine hydroxylase, NMDA receptor subunit 2B and opioid receptor in the zebrafish brain. Pakistan Journal of Pharmaceutical Sciences. 2021;34(5):1659-65. doi:10.36721/PJPS.2021.34.5.REG.1659-1665.1

Komatsu T, Katsuyama S, Takano F, Okamura T, Sakurada C, Tsuzuki M, et al. Possible involvement of the mu opioid receptor in the antinociception induced by sinomenine on formalin-induced nociceptive behavior in mice. Neurosci Lett. 2019;699:103-8. doi:10.1016/j.neulet.2019.01.035

Tabanelli R, Brogi S, Calderone V. Targeting Opioid Receptors in Addiction and Drug Withdrawal: Where Are We Going? Int J Mol Sci. 2023;24(13). doi:10.3390/ijms241310888

Bull FA, Baptista-Hon DT, Sneddon C, Wright L, Walwyn W, Hales TG. Src Kinase Inhibition Attenuates Morphine Tolerance without Affecting Reinforcement or Psychomotor Stimulation. Anesthesiology. 2017;127(5):878-89. doi:10.1097/ALN.0000000000001834

Li H, Zhou X, Chen R, Xiao Y, Zhou T. The Src-Kinase Fyn is Required for Cocaine-Associated Memory Through Regulation of Tau. Front Pharmacol. 2022;13:769827. doi:10.3389/fphar.2022.769827

Oliva I, Saberi SA, Rangel-Barajas C, Iyer V, Bunner KD, Lai YY, et al. Inhibition of PSD95-nNOS protein-protein interactions decreases morphine reward and relapse vulnerability in rats. Addict Biol. 2022;27(5):e13220. doi:10.1111/adb.13220

Brabant C, Alleva L, Quertemont E, Tirelli E. Involvement of the brain histaminergic system in addiction and addiction-related behaviors: a comprehensive review with emphasis on the potential therapeutic use of histaminergic compounds in drug dependence. Prog Neurobiol. 2010;92(3):421-41. doi:10.1016/j.pneurobio.2010.07.002

Zhang YS, Han JY, Iqbal O, Liang AH. Research Advances and Prospects on Mechanism of Sinomenin on Histamine Release and the Binding to Histamine Receptors. Int J Mol Sci. 2018;20(1). doi:10.3390/ijms20010070

Gawel K, Labuz K, Jenda M, Silberring J, Kotlinska JH. Influence of cholinesterase inhibitors, donepezil and rivastigmine on the acquisition, expression, and reinstatement of morphine-induced conditioned place preference in rats. Behav Brain Res. 2014;268:169-76. doi:10.1016/j.bbr.2014.04.019

Sadat-Shirazi MS, Karimi F, Kaka G, Ashabi G, Ahmadi I, Akbarabadi A, et al. Parental morphine exposure enhances morphine (but not methamphetamine) preference and increases monoamine oxidase-B level in the nucleus accumbens. Behav Pharmacol. 2019;30(5):435-45. doi:10.1097/FBP.0000000000000465

Wu M, Cheng Z, Le AT, Tan Y, Peltz G. Optimizing a therapy for opiate use disorders: Characterizing ondansetron pharmacokinetics in blood and brain. Clin Transl Sci. 2023;16(2):216-23. doi:10.1111/cts.13440

Leach PT, Kenney JW, Gould TJ. c-Jun-N-terminal kinase 1 is necessary for nicotine-induced enhancement of contextual fear conditioning. Neurosci Lett. 2016;627:61-4. doi:10.1016/j.neulet.2016.05.048

Lei W, Duron DI, Stine C, Mishra S, Blagg BSJ, Streicher JM. The Alpha Isoform of Heat Shock Protein 90 and the Co-chaperones p23 and Cdc37 Promote Opioid Anti-nociception in the Brain. Front Mol Neurosci. 2019;12:294. doi:10.3389/fnmol.2019.00294

Liu WT, Han Y, Liu YP, Song AA, Barnes B, Song XJ. Spinal matrix metalloproteinase-9 contributes to physical dependence on morphine in mice. J Neurosci. 2010;30(22):7613-23. doi:10.1523/JNEUROSCI.1358-10.2010

Sharp JL, Pearson T, Smith MA. Sex differences in opioid receptor mediated effects: Role of androgens. Neurosci Biobehav Rev. 2022;134:104522. doi:10.1016/j.neubiorev.2022.104522

Calarco CA, Fox ME, Van Terheyden S, Turner MD, Alipio JB, Chandra R, et al. Mitochondria-Related Nuclear Gene Expression in the Nucleus Accumbens and Blood Mitochondrial Copy Number After Developmental Fentanyl Exposure in Adolescent Male and Female C57BL/6 Mice. Front Psychiatry. 2021;12:737389. doi:10.3389/fpsyt.2021.737389

Fu C, Wang Q, Zhai X, Gao J. Sinomenine reduces neuronal cell apoptosis in mice after traumatic brain injury via its effect on mitochondrial pathway. Drug Des Devel Ther. 2018;12:77-84. doi:10.2147/DDDT.S154391