Optical Coherence Tomography in Different Subtypes of Age-related Macular Degeneration: A Literature Review

Main Article Content

Rituparna Ghoshal
Somnath Ghosh
Sharanjeet Sharanjeet-Kaur
Nor Fariza Ngah
Roslin Azni Binti Abd Aziz

Abstract

Optical coherence tomography (OCT) is considered as an important tool for the diagnosis, differentiation and monitoring of various subtypes of AMD. Understanding OCT findings in different subtypes of AMD is the key to manage AMD. Thus, present review aimed to report the different OCT features seen in different subtypes of AMD and to discuss the OCT parameters that are associated with visual functions of AMD eyes. Electronic search engines such as were employed to search articles that justified the objective of this review. While, changes such as drusens associated with alterations in outer nuclear layer and inner segment and outer segment junction of photoreceptor and external limiting membrane were observed in early to intermediate AMD, components of neovascular membrane, retinal pigment epithelium detachment, neurosensory retinal detachment along with subretinal and intraretinal fluid, subretinal tissue were reported in neovascular AMD. Similarly, variations in pattern of retinal pigment epithelium detachment, presence of polyp, presence of hyper-reflective mass like lesions, intraretinal cysts were some of the features that differentiated various sub types of neovascular AMD. While, in early to intermediate AMD, changes in retinal pigment epithelium and outer nuclear layer associated well with the visual functions, more research were needed to establish a strong correlation between visual functions and OCT parameters in different sub types of neovascular AMD. The present review concluded that OCT plays an important role in diagnosis, differentiating different subtypes of AMD. However, there is scope for future research to establish specific OCT biomarkers in various subtypes of AMD.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ghoshal, R., Ghosh, S., Sharanjeet-Kaur, S., Ngah, N. F., & Abd Aziz, R. A. B. (2025). Optical Coherence Tomography in Different Subtypes of Age-related Macular Degeneration: A Literature Review. Malaysian Journal of Medicine and Health Sciences, 21(1), 336–345. https://doi.org/10.47836/mjmhs.21.1.39
Section
Review Article

References

De Jong PT. Age-related macular degeneration. N Engl J Med. 2006;355(14):1474-85. doi: 10.1056/NEJMra062326.

WHO global data on visual impairment. 2010. www.who.int/blindness/publications/globaldata/en/.

Age-Related Eye Disease Study Research Group. A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation with Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss: Arch Ophthalmol. 2001; 119(10): 1417–36. doi: 10.1001/archopht.119.10.1417.

Coleman HR, Chan C, Ferris III FL, Chew EY. Age-related macular degeneration. Lancet. 2008; 372(9652): 1835–45. doi: 10.1016/S0140-6736(08)61759-6.

Ferris III FL, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, et al. Clinical Classification of Age-related Macular Degeneration. Ophthalmology. 2013; 120(4): 844 – 51. doi: 10.1016/j.ophtha.2012.10.036.

Chopdar A, Chakravarthy U, Verma D. Age related macular degeneration. BMJ. 2003; 326(7387): 485–88. doi: 10.1136/bmj.326.7387.485.

Jager RD, Mieler WF, Miller JW. Age-Related Macular Degeneration. N Engl J Med. 2008; 358(24): 2606-17. doi: 10.1056/NEJMra0801537.

Maruko I, Iida T, Saito M, Nagayama D, Saito K. Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol. 2007; 144(1): 15-22. doi: 10.1016/j.ajo.2007.03.047.

Takahashi K, Ishibashi T, Ogur Y, Yuzawa M, Working Group for Establishing Diagnostic Criteria for Age-Related Macular Degeneration. Classification and diagnostic criteria of age-related macular degeneration. Nippon Ganka Gakkai Zasshi. 2008; 112 (12): 1076-84. PMID: 19157028.

Yoshida Y, Kohno T, Yamamoto M, Yoneda T, Iwami H, Shiraki K. Two-year results of reduced-fluence photodynamic therapy combined with intravitreal ranibizumab for typical age-related macular degeneration and polypoidal choroidal vasculopathy. Jpn J Ophthalmol. 2013; 57(3): 283-93. doi: 10.1007/s10384-013-0234-z.

Hata M, Tsujikawa A, Miyake M, Yamashiro K, Ooto S, Oishiet A et al. Two-year visual outcome of ranibizumab in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2015; 253(2): 221-27. doi: 10.1007/s00417-014-2688-1.

Lim LS, Cheung CM, Wong TY. Asian Age-Related Macular Degeneration: Current Concepts and Gaps in Knowledge. Asia-Pacific journal of ophthalmology. 2013; 2(1):32-41. doi: 10.1097/APO.0b013e31827ff5bc.

Zhang Y, Gan Y, Zeng Y, Zhuang X, Zhang X, Ji Y, et al. Incidence and multimodal imaging characteristics of macular neovascularisation subtypes in Chinese neovascular age-related macular degeneration patients. The British journal of ophthalmology. 2024; 108(3): 391–397. https://doi.org/10.1136/bjo-2022-322392

Fercher AF. Optical coherence tomography. Journal of Biomedical Optics. 1996; 1(2): 157–73. doi: 10.1117/12.231361.

Hee MR, Izatt JA, Swanson EA, Huang D, Schuman J S, Lin C P, et al. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995; 113: 325–332. doi:10.1001/archopht.1995.01100030081025

Bhende M, Shetty S, Parthasarathy MK, Ramya S. Optical coherence tomography: A guide to interpretation of common macular diseases. Indian J Ophthalmol. 2018; 66(1):20-35. doi: 10.4103/ijo.IJO_902_17.

Chen Y, Vuong LN, Liu J, Ho J, Srinivasan VJ, Gorczynska I, et al. Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration. Opt Express. 2009;17:4046–4060. DOI: 10.1364/oe.17.004046.

Pierro L, Zampedri E, Milani P, Gagliardi M, Isola V, Pece A. Spectral domain OCT versus time domain OCT in the evaluation of macular features related to wet age-related macular degeneration. Clin Ophthalmol. 2012; 6:219-23. doi: 10.2147/OPTH.S27656.

Miller AR, Roisman L, Zhang Q, Zheng F, Rafael de Oliveira Dias J, Yehoshua Z, et al. Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization. Investigative ophthalmology & visual science. 2017; 58(3):1499–1505. https://doi.org/10.1167/iovs.16-20969

De Salvo G, Vaz-Pereira S, Keane PA, Tufail A, Liew G. Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol. 2014; 158(6): 1228-38.e1. doi: 10.1016/j.ajo.2014.08.025.

Ghoshal R. Association between functional and structural changes in eyes with age related macular degeneration. PhD thesis 2019, Programme of Optometry and Vision Science, National University of Malaysia.

Sadigh S, Cideciyan AV, Sumaroka A, Huang WC, Luo X, Swider M, et al. Abnormal thickening as well as thinning of the photoreceptor layer in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013; 54(3): 1603-12. doi: 10.1167/iovs.12-11286.

Rogala J, Zanger B, Assaad N, Fletcher EL, Kalloniatis M, Nivison-Smith L, et al. In Vivo Quantification of Retinal Changes Associated with Drusen in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2015; 56(3): 1689–700. doi: 10.1167/iovs.14-16221.

Ferrara D, Silver RE, Louzada RN, Novais EA, Collins GK, Seddon JM. Optical Coherence Tomography Features Preceding the Onset of Advanced Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2017; 58(9): 3519–29. doi: 10.1167/iovs.17-21696.

Liakopoulos S, Ongchin S, Bansal A, Msutta S, Walsh AC, Updike PG, et al. Quantitative optical coherence tomography findings in various subtypes of neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2008; 49(11): 5048– 54. doi: 10.1167/iovs.08-1877.

Keane PA, Liakopoulos S, Chang KT, Wang M, Dustin L, Walsh AC, et al. Relationship between optical coherence tomography retinal parameters and visual acuity in neovascular age-related macular degeneration. Ophthalmology. 2008; 115(12): 2206–14. doi: 10.1016/j.ophtha.2008.08.016. 26

Coscas F, Coscas G, Souied E, Tick S, Soubrane G. Opticalcoherence Tomogramphy identification of occult choroidal neovascularization in age-related macular degeneration. Am. J. Ophthalmol. 2007; 144(4): 592–99. doi: 10.1016/j.ajo.2007.06.014. 27.

Joeres S, Tsong JW, Updike PG, Collins AT, Dustin L, Walsh AC, et al. Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration. Investigative ophthalmology & visual science. 2007; 48(9): 4300–4307. https://doi.org/10.1167/iovs.07-0179.

Moraes G, DJ Fu, Wilson M, Khalid H, Wagner SK, Korot W, et al. Quantitative analysis of OCT for neovascular age-related macular degeneration using deep learning. Ophthalmology. 2021;128(5): 693–705. doi: 10.1016/j.ophtha.2020.09.025.

Chang YS, Kim JH, Kim JW, Lee TG, Kim CG. Optical Coherence Tomography-based Diagnosis of Polypoidal Choroidal Vasculopathy in Korean Patients. Korean J Ophthalmol. 2016; 30(3): 198–205. doi: 10.3341/kjo.2016.30.3.198.

Zhang Y, Yao J, Wang XH, Zhao L, Wang LJ, Wanget JM, et al. Sensitivity and specificity of optical coherence tomography in diagnosing polypoidal choroidal vasculopathy. Nan Fang Yi Ke Da XueXue Bao. 2016; 37(2): 165-71. doi: 10.3969/j.issn.1673-4254.2017.02.04.

Chen PJ, Chen SN. Clinical characteristics of exudative age-related macular degeneration. Taiwan. Taiwan Journal of Ophthalmology. 2012; 2(12): 127-30. doi: 10.1371/journal.pone.0261320.

Lim EH, Han JI, Kim CG, Cho SW, Lee TG. Characteristic findings of optical coherence tomography in retinal angiomatous proliferation. Korean J Ophthalmol. 2013; 27(5):351-60. doi: 10.3341/kjo.2013.27.5.351.

Kim JH, Chang YS. Kim JW, Lee TG, Kim HS. Diagnosis of type 3 neovascularization based on optical coherence tomography images. Retina (Philadelphia, Pa.). 2016; 36(8): 1506–1515. https://doi.org/10.1097/IAE.0000000000000932.

Hwang DD, Choi S, Ko J, Yoon J, Park JI, Hwang JS, et al. Distinguishing retinal angiomatous proliferation from polypoidal choroidal vasculopathy with a deep neural network based on optical coherence tomography. Sci Rep. 2021; 11(1):9275. doi: 10.1038/s41598-021-88543-7.

Singh SR, Lupidi M, Mishra SB, Paez-Escamilla M, Querques G, Chhablani J. Unique optical coherence tomographic features in age-related macular degeneration. Survey of Ophthalmology. 2020; 65(4):451–457. doi: 10.1016/j.survophthal.2020.01.001

Metrangolo C, Donati S, Mazzola M, Fontanel L, Messina W, D'alterio G, et al. OCT Biomarkers in Neovascular Age-Related Macular Degeneration: A Narrative Review. J Ophthalmol. 2021; 9994098. doi: 10.1155/2021/9994098.

Keane PA, Patel PJ, Ouyang Y, Chen FK, Ikeji F, Walsh AC, et al. Effects of retinal morphology on contrast sensitivity and reading ability in neovascular age-related macular degeneration. InvestigOphthalmol Vis Sci. 2010; 51(11): 5431-37. doi: 10.1167/iovs.09-4846.

Pappuru RR, Ouyang PY, Nittala MG, Hemmati HD, Keane PA, Walsh AC, et al. Relationship between Outer Retinal Thickness Substructures and Visual Acuity in Eyes with Dry Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2011; 52(9): 6743-48. doi: 10.1167/iovs.10-6723.

Acton JH, Smith RT, Hood DC, Greenstein VC. Relationship betweenretinal layer thickness and the visual field in early age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012; 53(12): 7618-24. doi: 10.1167/iovs.12-10361.

Keane PA, Liakopoulos S, Ongchin SC, Heussen FM, Msutta S, Changet KT, et al. Quantitative sub analysis of optical coherence tomography after treatment with ranibizumab for neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2008ii; 49(7): 3115–20. doi: 10.1167/iovs.08-1689.

Karampelas M, Sim DA, Keane PA, Papastefanou VP, Sadda SR, Tufail, A et al. Evaluation of retinal pigment epithelium–Bruch membrane complex thickness in dry age-related macular degeneration using optical coherence tomography. Bjophthalmol. 2013; 97(10): 1256-61. doi: 10.1136/bjophthalmol-2013-303219.

Hazel CA, Petre KL, Armstrong RA, Frost NA. Visual function and subjective quality of life compared in subjects with acquired macular disease. InvestigOphthalmol Vis Sci. 2000; 41(6): 1309–15. PMID: 10798645.

Wood JM, Owens DA. Standard measures of visual acuity do not predict drivers’ recognition performance under day or night conditions. Optom Vis Sci. 2005; 82(8): 698–705. doi: 10.1097/01.opx.0000175562.27101.51.

Nixon DR, Flinn NAP. Evaluation of contrast sensitivity and other visual function outcomes in neovascular age-related macular degeneration patients after treatment switch to aflibercept from ranibizumab. Clin Ophthalmol. 2017; 11: 715–21. doi: 10.2147/OPTH.S131343.

Ghoshal R, Sharanjeet-Kaur S, Mohamad FN, Mutalib HA, Ghosh S, Ngah NF, et al. Correlation between Visual Functions and Retinal Morphology in Eyes with Early and Intermediate Age-Related Macular Degeneration. Int J Environ Res Public Health. 2020; 17(17):6379. doi: 10.3390/ijerph17176379.

Lamin A, Oakley JD, Dubis AM., Russakoff DB, Sivaprasad S. Changes in volume of various retinal layers over time in early and intermediate age-related macular degeneration. Eye (London, England) 2019; 33(3): 428–34. doi: 10.1038/s41433-018-0234-9.

Moutray T, Alarbi M, Mahon G, Stevenson M, Chakravarthy U. Relationships between clinical measures of visual function, fluorescein angiographic and optical coherence tomography features in patients with sub foveal choroidal neovascularisation. Br J Ophthalmol. 2008; 9(3): 361-64. doi: 10.1136/bjo.2007.123976.

Henschel A, Spital G, Lommatzsch A, Pauleikhoff D. Opticalcoherence tomography in neovascular age related macular degeneration compared to fluorescein angiography and visual acuity. Eur J Ophthalmol. 2009; 19(5): 831–35. doi: 10.1177/112067210901900523.

Kashani AH, Keane PA, Dustin L, Walsh AC, Sadda SR. Quantitative subanalysis of cystoid spaces and outer nuclear layer using optical coherence tomography in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2009; 50(33): 3366–73. doi: 10.1167/iovs.08-2691.

Yaylali SA, Akcakaya AA, Erbil HH, Candemir B, Mesci C, Acar H. The relationship between optical coherence tomography patterns, angiographic parameters and visual acuity in age-related macular degeneration. Int Ophthalmol. 2012; 32: 25-30. DOI 10.1007/s10792-012-9519-3.

Moraes G, Fu DJ, Wilson M, Khalid H, Wagner SK, Korot E, et al. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology. 2021; 128(5): 693–05. doi: 10.1016/j.ophtha.2020.09.025.

Ghoshal R, Ghosh S, Sharanjeet-Kaur S, Fadzil NM, Ngah NF. Association between Retinal Morphology and Visual Functions in Eyes with Typical Neovascular Age Related Macular Degeneration: A Pilot Study. Journal of Health Science and Medical Research. 2024; 20241068.. DOI:10.31584/jhsmr.20241068.

Sharanjeet-Kaur S, Ghoshal R, Fadzil N, Ghosh S, Aziz RABA, Ngah NF. Visual functions and retinal morphology in patients with polypoidal choroidal vasculopathy seen in an age-related macular degeneration referral centre of Malaysia. Malays. J. Public Health Med. 2018;1(5):124–34. doi: 10.3390/ijerph18052581.

Gupta I. Incidence of non-responders in age related macular degeneration treated with intravitreal anti-vascular endothelial growth factors and identify optical coherence tomography biomarkers of non-response. Dissertation, Diplomate of National Board. 2019; Sankara Nethralaya.