MicroRNAs in HPV-induced Cervical Cancer Carcinogenesis and Potential Biomarkers
Main Article Content
Abstract
The prevalence of cervical cancer largely due to long-term high-risk human papillomavirus (HPV) infection continues to be a major global health concern. Despite the existence of effective preventive interventions such as HPV vaccination and cervical screening programs, the progression of HPV-induced cervical lesions to invasive cancer remains a significant concern. Over the past 10 years, microRNAs (miRNAs) have become one of the most important gene expression regulators, controlling a wide range of biological processes, including carcinogenesis. Understanding the complex regulatory network including miRNAs and their target genes can provide important insights into the molecular mechanisms driving cervical carcinogenesis. Using miRNAs' diagnostic, prognostic, and therapeutic potential may pave the way for personalized approaches to the treatment of HPV-induced cervical cancer, thereby improving patient outcomes. The objective of this review is to provide a comprehensive analysis of the critical role miRNAs play in the induction and progression of HPV-induced cervical cancer. An electronic search was performed through PubMed, Scopus and Science Direct with the following MeSH (Medical Subject Heading) term: human papillomavirus, cervical cancer and microRNAs. From the search, only studies with HPV-induced cervical cancer with miRNA dysregulation which involve in regulation of cervical cancer development and progression were included.
Downloads
Article Details
References
Sung H, Ferlah J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Journal for Clinicians. 2021;71(3):209–49. doi: 10.3322/caac.21660
Laengsri V, Kerdpin U, Plabplueng C, Treeratanapiboon L, Nuchnoi P. Cervical Cancer Markers: Epigenetics and microRNAs. Lab Medicine. 2018 Mar 21;49(2):97–111. doi: 10.1093/labmed/lmx080
Bozgeyik E, Tepe NB, Bozdag Z. Identification of microRNA expression signature for the diagnosis and prognosis of cervical squamous cell carcinoma. Pathology-Research and Practice. 2020 Nov 1;216(11):153159. doi: 10.1016/j.prp.2020.153159.
Dun, C., Yuan, M., Zhao, X., Hu, S., Arbyn, M., & Zhao, F. Clinical evaluation of primary human papillomavirus (HPV) testing with extended HPV genotyping triage for cervical cancer screening: A pooled analysis of individual patient data from nine population-based cervical cancer screening studies from China. Cancer medicine. 2024 Jun 27;13(11). doi: 10.1002/cam4.7316.
Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. The Lancet. 2013;382(9895):889–99. doi: 10.1016/S0140-6736(13)60022-7.
Gbadegesin M, Soremekun O, Oluwasola TAO, Okolo C. An Overview of the Genetics of Cervical Cancer. Arch Basic Appl Med. 2017; 5(2): 47–57.
Akram Husain RS, Ramakrishnan v. Global variation of human papillomavirus genotypes and selected genes involved in cervical malignancies. Ann Glob Health. 2015; 81(5): 675-683. doi: 10.1016/j.aogh.2015.08.026.
Chan CK, Aimagambetova G, Ukybassova T, Kongrtay K, Azizan A. Human Papillomavirus Infection and Cervical Cancer: Epidemiology, Screening, and Vaccination - Review of Current Perspectives. J Oncol. 2019;2019. doi: 10.1155/2019/3257939.
Walboomers, J. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V., et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. The Journal of pathology. 1999:12–19. doi: 10.1002/(SICI)1096-9896(199909)189
Abbas M, Mehdi A, Haider KF, Verma S, Ahmad A, Khatoon F, et al. Role of miRNAs in cervical cancer: A comprehensive novel approach from pathogenesis to therapy. Journal of Gynecology. 2021; 50(9): 102159. doi: 10.1016/j.jogoh.2021.102159.
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015; 15(6):321–33. doi: 10.1038/nrc3932.
Kranjec C, Banks L. A systematic analysis of human papillomavirus (HPV) E6 PDZ substrates identifies MAGI-1 as a major target of HPV type 16 (HPV-16) and HPV-18 whose loss accompanies disruption of tight junctions. J Virol. 2011;85(4):1757–64. doi: 10.1128/JVI.01756-10.
Kranjec C, Tomaić V, Massimi P, Nicolaides L, Doorbar J, Banks L. The high-risk HPV E6 target scribble (hScrib) is required for HPV E6 expression in cervical tumour-derived cell lines. Papillomavirus Research. 2016;2:70–7. doi: 10.1016/j.pvr.2016.04.001.
Chang T, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745–52. doi: 10.1016/j.molcel.2007.05.010.
Slabáková E, Culig Z, Remšík J, Souček K. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 2017;8(10):e3100–e3100. doi: 10.1038/cddis.2017.495.
Hart M, Rheinheimer S, Leidinger P, Backes C, Menegatti J, Fehlmann T, et al. Identification of miR-34a-target interactions by a combined network based and experimental approach. Oncotarget. 2016;7(23):34288. doi: 10.18632/oncotarget.9103.
Lena AM, Shalom-Feuerstein R, di Val Cervo P R, Aberdam D, Knight RA, Melino G, et al. miR-203 represses ‘stemness’ by repressing ΔNp63. Cell Death Differ. 2008;15(7):1187–95. doi:10.1038/cdd.2008.69.
Pedroza-Torres A, López-Urrutia E, García-Castillo V, Jacobo-Herrera N, Herrera LA, Peralta-Zaragoza O, et al. MicroRNAs in cervical cancer: Evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance. Molecules. 2014;19(5):6263–81. doi: 10.3390/molecules19056263.
Berezikov E, Guryev V, Van De Belt J, Wienholds E, Plasterk RHA, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120(1):21–4. doi: 10.1016/j.cell.2004.12.031.
Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Translational Research. 2011;157(4):163–79. doi: 10.1016/j.trsl.2011.01.007.
Denli M, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432: 231–235. https://doi.org/10.1038/nature03049
Shechner DM, Grant RA, Bagby SC, Koldobskaya Y, Piccirilli JA, Bartel DP. Crystal structure of the catalytic core of an RNA-Polymerase ribozyme. Science (1979). 2009;326(5957):1271–5. doi: 10.1126/science.1174676.
Sen GL., Blau HM. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol. 2005;7(6):633–6. doi: 10.1038/ncb1265
Liu J, Rivas FV, Wohlschlegel J, Yates JR, Parker R, Hannon GJ. A role for the P-body component GW182 in microRNA function. Nat Cell Biol. 2005;7(12):1161–6. doi: 10.1038/ncb1333.
Xu W, Lucas AS, Wang Z, Liu Y. Identifying microRNA targets in different gene regions. BMC Bioinformatics. 2013;15:5–6. doi: 10.1186/1471-2105-15-S7-S4.
Ipsaro JJ, Joshua-Tor L. From guide to target: Molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol. 2015;22(1):20–8. doi: 10.1038/nsmb.2931.
Zhang J, Zhou W, Liu Y, Liu T, Li C, Wang L. Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5’UTR of RUNX3. Oncol Lett. 2018;15(5):7215–20. doi: 10.3892/ol.2018.8217.
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;3:9. doi: 10.3389/fendo.2018.00402.
Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 2013.12;8(11). doi: 10.1371/journal.pone.0079467.
Abbas M, Mehdi A, Khan FH, Verma S, Ahmad A, Khatoon F, et al. Role of miRNAs in cervical cancer: A comprehensive novel approach from pathogenesis to therapy. J Gynecol Obstet Hum Reprod. 2021;50(9). doi: 10.1016/j.jogoh.2021.102159.
Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of MicroRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. Journal of Biological Chemistry. 2009;284(6):3728–38. doi: 10.1074/jbc.M808788200.
Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006 Mar 27;94(6):776–80. doi: 10.1038/sj.bjc.6603023.
Jo MH, Shin S, Jung SR, Kim E, Song JJ, Hohng S. Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs. Mol Cell. 2015;59(1):117–24. doi: 10.1016/j.molcel.2015.04.027.
Decker CJ, Parker R. P-bodies and stress granules: Possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol. 2012;4(9). doi: 10.1101/cshperspect.a012286.
Kumar MS, Lu J, Mercer KL., Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39(5):673–7. doi: doi.org/10.1038/ng2003.
Gocze K, Gombos K, Kovacs K, Juhasz K, Gocze P, Kiss I. MicroRNA expressions in HPV-induced cervical dysplasia and cancer. Anticancer Res. 2015;35(1):523–30.
Karimi F, Mollaei H, 2021 undefined. Potential of miRNAs in cervical cancer chemoresistance. Elsevier. 2021;23. doi: 10.1016/j.genrep.2021.101109.
Selcuklu SD, Donoghue MTA, Spillane C. miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009;37(4):918–25. doi: 10.1042/BST0370918.
Yao Q, Xu H, Zhang QQ, Zhou H, Qu LH. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun. 2009;388(3):539–42. doi: 10.1016/j.bbrc.2009.08.044.
Yao T, Lin Z. MiR-21 is involved in cervical squamous cell tumorigenesis and regulates CCL20. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2012;1822(2):248–60. doi: 10.1016/j.bbadis.2011.09.018.
Hiyoshi Y, Kamohara H, Karashima R, Sato N, Imamura Y, Nagai Y, et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clinical Cancer Research. 2009;15(6):1915–22. doi: 10.3892/or.2018.6944.
Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T, et al. MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistancemiR-21 Elicits Malignant Progression in Pancreatic Cancer. Mol Cancer Ther. 2009;8(5):1067–74. doi: 10.1158/1535-7163.
Díaz-González SDM, Deas J, Benítez-Boijseauneau O, Gómez-Cerón C, Bermúdez-Morales VH, Rodríguez-Dorantes M, et al. Utility of MicroRNAs and siRNAs in cervical carcinogenesis. Biomed Res Int. 2015;2015. doi: 10.1155/2015/374924.
Li JH, Xiao X, Zhang YN, Wang YM, Feng LM, Wu YM, et al. MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol Oncol. 2011;120(1):145–51. doi: 10.1016/j.ygyno.2010.09.009.
González-Quintana V, Palma-Berré L, Campos-Parra AD, López Urrutia E, Peralta-Zaragoza O, Vazquez-Romo R, et al. MicroRNAs are involved in cervical cancer development, progression, clinical outcome and improvement treatment response. Oncol Rep. 2016;35(1):3–12. doi: 10.3892/or.2015.4369.
Clapé C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F, et al. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One. 2009;4(10). doi: 10.1371/journal.pone.0007542.
Liu L, Yu X, Guo X, Tian Z, Su M, Long Y, et al. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep. 2012;5(3):753–60. doi: 10.3892/mmr.2011.696.
Chakrabatti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res. 2013;319(10):1575–85. doi: 10.1016/j.yexcr.2013.02.025.
Wang X, Zhao Y, Cao W, Wang C, Sun B, Chen J, et al. miR-138-5p acts as a tumor suppressor by targeting hTERT in human colorectal cancer. Int J Clin Exp Pathol. 2017;10(12):11516.
Greco D, Kivi N, Qian K, Leivonen SK, Auvinen P, Auvinen E. Human papillomavirus 16 E5 modulates the expression of host microRNAs. PLoS One. 2011;6(7). doi: 10.1371/journal.pone.0021646.
Hu, J., Liao, D., Sun, Z., Ren, W., Zhao, L., Fang, Y, et al. The HPV16 E6, E7/miR-23b-3p/ICAT signaling axis promotes proliferation, migration, invasion and EMT of cervical cancer cells. Carcinogenesis. 2023;44(33). doi: 10.1093/carcin/bgad008.
Konstantopoulos, G., Leventakou, D., Saltiel, D. R., Zervoudi, E., Logotheti, E., Pettas, S., et al. HPV16 E6 Oncogene Contributes to Cancer Immune Evasion by Regulating PD-L1 Expression through a miR-143/HIF-1a Pathway. Viruses. 2024;16(1)113. doi: 10.3390/v16010113.
Tommasino M, Crawford L. Human papillomavirus E6 and E7: proteins which deregulate the cell cycle. Bioessays. 1995;17(6):509–18. doi: 10.1002/bies.950170607.
Celegato M, Messa L, Goracci L, Mercorelli B, Bertagnin C, Spyrakis F, et al. A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Lett. 2020;470:115–25. doi: 10.1016/j.canlet.2019.10.046.
Kim H, Roe J, Lee J, Cho E, Youn H. p53 regulates glucose metabolism by miR-34a. Biochem Biophys Res Commun. 2013;437(2):225–31. doi: 10.1016/j.bbrc.2013.06.043.
Wiest T, Schwarz E, Enders C, Flechtenmacher C, Bosch FX. Involvement of intact HPV16 E6/E7 gene expression in head and neck cancers with unaltered p53 status and perturbed pRb cell cycle control. Oncogene. 2002;21(10):1510–7. doi: 10.1038/sj.onc.1205214.
Viticchiè G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH, et al. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell cycle. 2011;10(7):1121–31. doi.org/10.4161/cc.10.7.15180.
Melar-New M, Laimins LA. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol. 2010;84(10):5212–21. doi: 10.1128/JVI.00078-10.
Zheng ZM, Wang X. Regulation of cellular miRNA expression by human papillomaviruses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2011;1809(11–12):668–77. doi: 10.1016/j.bbagrm.2011.05.005
Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010;17(2):215–20. doi: 10.1038/cdd.2009.69.
Tornesello ML, Faraonio R, Buonaguro L, Annunziata C, Starita N, Cerasuolo A, et al. The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer. Front Oncol. 2020;10:150. doi: 10.3389/fonc.2020.00150.
Thorsen SB, Obad S, Jensen NF, Stenvang J, Kauppinen S. The therapeutic potential of microRNAs in cancer. The Cancer Journal. 2012;18(3):275–84. doi: 10.1097/PPO.0b013e318258b5d6.
Melo SA, Kalluri R. Molecular Pathways: MicroRNAs as Cancer TherapeuticsAnti-miRs and miRNA Mimetics in Therapy. Clinical Cancer Research. 2012;18(16):4234–9. doi: 10.1158/1078-0432.CCR-11-2010.
Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA therapeutics in cancer—an emerging concept. EBioMedicine 2016; 12: 34–42. doi: 10.1016/j.ebiom.2016.09.017
Gambari R, Brognara E, Spandidos DA, Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology. International Journal of Oncology 2016; 49(1): 5–32. doi: 10.3892/ijo.2016.3503
Zampetaki A, Mayr M. MicroRNAs in vascular and metabolic disease. Circulation Research 2012; 110(3): 508–522. doi:10.1161/CIRCRESAHA.111.247445
del Mar Díaz-González S, Rodríguez-Aguilar ED, Meneses-Acosta A, Valadez-Graham V, Deas J, Gómez-Cerón C, et al. Transregulation of microRNA miR-21 promoter by AP-1 transcription factor in cervical cancer cells. Cancer Cell Int. 2019;19(1):1–15. doi: 10.1186/s12935-019-0931-x.
Zhang L, Zhan X, Yan D, Wang Z. Circulating microRNA-21 is involved in lymph node metastasis in cervical cancer by targeting RASA1. International Journal of Gynecologic Cancer. 2016;26(5). doi: 10.1097/IGC.0000000000000694
Zhang Z, Wang J, Wang X, Song W, Shi Y, Zhang L. MicroRNA-21 promotes proliferation, migration, and invasion of cervical cancer through targeting TIMP3. Arch Gynecol Obstet. 2018;297:433–42. doi: 10.1007/s00404-017-4598-z
Zhang Y, Sun B, Zhao L, Liu Z, Xu Z, Tian Y, et al. Up-regulation of miRNA-148a inhibits proliferation, invasion, and migration while promoting apoptosis of cervical cancer cells by down-regulating RRS1. Biosci Rep. 2019;39(5). doi: 10.1042/BSR20181815.
Pereira PM, Marques JP, Soares AR, Carreto L, Santos MAS. MicroRNA expression variability in human cervical tissues. PLoS One. 2010;5(7):e11780. doi: 10.1371/journal.pone.0011780
Cui X, Wang X, Zhou X, Jia J, Chen H, Zhao W. miR-106a Regulates Cell Proliferation and Autophagy by Targeting LKB1 in HPV-16–Associated Cervical CancermiR-106a Promotes CSCC Proliferation by Targeting LKB1. Molecular Cancer Research. 2020;18(8):1129–41. doi: 10.1158/1541-7786.MCR-19-1114.
Li X, Zhou Q, Tao L, Yu C. MicroRNA-106a promotes cell migration and invasion by targeting tissue inhibitor of matrix metalloproteinase 2 in cervical cancer. Oncol Rep. 2017;38(3):1774–82. doi: 10.3892/or.2017.5832
Zhang W, Zhang M, Liu L, Jin D, Wang P, Hu J. MicroRNA-183-5p inhibits aggressiveness of cervical cancer cells by targeting integrin subunit beta 1 (ITGB1). International Medical Journal of Experimental and Clinical Research. 2018;24:7137. doi: 10.12659/MSM.910295.
Fan D, Wang Y, Qi P, Chen Y, Xu P, Yang X, et al. MicroRNA-183 functions as the tumor suppressor via inhibiting cellular invasion and metastasis by targeting MMP-9 in cervical cancer. Gynecol Oncol. 2016;141(1):166–74. doi: 10.1016/j.ygyno.2016.02.006.
Luo S, Li N, Yu S, Chen L, Liu C, Rong J. MicroRNA-92a promotes cell viability and invasion in cervical cancer via directly targeting Dickkopf-related protein 3. Exp Ther Med. 2017;14(2):1227–34. doi: 10.3892/etm.2017.4586.
Wang X, Meyers C, Guo M, Zheng Z. Upregulation of p18Ink4c expression by oncogenic HPV E6 via p53‐miR‐34a pathway. Int J Cancer. 2011;129(6):1362–72. doi: 10.1002/ijc.25800.
Li B, Hu Y, Ye F, Li Y, Lv W, Xie X. Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. International Journal of Gynecologic Cancer. 2010;20(4). doi: 10.1111/IGC.0b013e3181d63170.
McKenna DJ, McDade SS, Patel D, McCance DJ. MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6. J Virol. 2010;84(20):10644–52. doi: 10.1128/JVI.00703-10.
Xu Y, He Q, Lu Y, Tan F, Zhao L, Ou R. MicroRNA-218-5p inhibits cell growth and metastasis in cervical cancer via LYN/NF-κB signaling pathway. Cancer Cell Int. 2018;18(1):1–15. doi: 10.1186/s12935-018-0673-1.
Tian R, Wang X, Hou L, Jia W, Yang Q, Li Y, et al. MicroRNA-372 is down-regulated and targets cyclin-dependent kinase 2 (CDK2) and cyclin A1 in human cervical cancer, which may contribute to tumorigenesis. Journal of Biological Chemistry. 2011;286(29):25556–63. doi: 10.1074/jbc.M111.221564.
Liang Y, Sun R, Li L, Yuan F, Liang W, Wang L, et al. A functional polymorphism in the promoter of MiR-143/145 is associated with the risk of cervical squamous cell carcinoma in Chinese women: a case–control study. Medicine. 2015;94(31). doi: 10.1097/MD.0000000000001289.
Li BH, Zhou JS, Ye F, Cheng XD, Zhou CY, Lu WG, et al. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur J Cancer. 2011;47(14):2166–74. doi: 10.1016/j.ejca.2011.04.037.
Wei H, He WR, Chen KM, Wang XW, Yi CJ. MiR-101 affects proliferation and apoptosis of cervical cancer cells by inhibition of JAK2. Eur Rev Med Pharmacol Sci. 2019;23(13):5640–7. doi: 10.26355/eurrev_201907_18299.
Wei H, He WR, Chen KM, Wang XW, Yi CJ. MiR-101 affects proliferation and apoptosis of cervical cancer cells by inhibition of JAK2. Eur Rev Med Pharmacol Sci. 2021;25(8):3147. doi: 10.26355/eurrev_201906_18050.
Wang W, Li Y, Liu N, Gao Y, Li L. MiR-23b controls ALDH1A1 expression in cervical cancer stem cells. BMC Cancer. 2017;17(1):1–6. doi: 10.1186/s12885-017-3192-x.
Campos-Viguri GE, Peralta-Zaragoza O, Jiménez-Wences H, Longinos-González AE, Castañón-Sánchez CA, Ramírez-Carrillo M, et al. MiR-23b-3p reduces the proliferation, migration and invasion of cervical cancer cell lines via the reduction of c-Met expression. Sci Rep. 2020;10(1):3256. doi: 10.1038/s41598-020-60143-x.
Yang Y, Xi W, Xi R, Li J, Li Q, Gao Y. MicroRNA 494 promotes cervical cancer proliferation through the regulation of PTEN. Oncol Rep. 2015;33(5). doi: 10.3892/or.2015.3821.
Cheng L, Kong B, Zhao Y, Jiang J. miR-494 inhibits cervical cancer cell proliferation through upregulation of SOCS6 expression. Oncol Lett. 2018;15(3):3075–80. doi: 10.3892/ol.2017.7651.
Zheng Z, Yang X, Yu Q, Li L, Qiao L. The regulating role of miR-494 on HCCR1 in cervical cancer cells. Cell Mol Biol. 2021;67(5):131–7. doi: 10.14715/cmb/2021.67.5.18.
Greco D, Kivi N, Qian K, Leivonen S, Auvinen P, Auvinen E. Human papillomavirus 16 E5 modulates the expression of host microRNAs. PLoS One. 2011;6(7). doi: 10.1371/journal.pone.0021646.
Faizullin LZ, Karnaukhov VN, Mzarelua GM, Chernova VF. MicroRNA expression in cervical intraepithelial neoplasia and cancer of the cervix uteri. Obstetrics and Gynecology. 2015;9:27–32.
Kuo W, Yu S, Li S, Lam H, Chang H, Chen W, et al. MicroRNA-324 in human cancer: miR-324-5p and miR-324-3p have distinct biological functions in human cancer. Anticancer Res. 2016;36(10):5189–96. doi: 10.21873/anticanres.11089.
Wang X, Wang H, McCoy JP, Banerjee NS, Rader JS, Broker TR, et al. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA. 2009;15(4):637–47. doi: 10.1261/rna.1442309.
Myklebust MP, Bruland O, Fluge Ø, Skarstein A, Balteskard L, Dahl O. MicroRNA-15b is induced with E2F-controlled genes in HPV-related cancer. Br J Cancer. 2011;105(11):1719–25. doi: 10.1038/bjc.2011.457.
Li Y, Wang F, Xu J, Ye F, Shen Y, Zhou J, et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV‐related target genes for miR‐29. J Pathol. 2011;224(4):484–95. doi: 10.1002/path.2873.