A Review on Finite Element Modelling and Simulation for Upper Limb of Human Bone and Implant

Main Article Content

Muhammad Hanif Ramlee
Belal Yahya Al-Tam
Asnida Abdul Wahab
Hong Seng Gan
Abdul Halim Abdullah

Abstract

Medical implants are normally used in clinical practice to treat most orthopaedics situations involving bone fractures, deformities, dislocation, and lengthening. It should be noted that specific measures regarding biomechanical and biomaterial characteristics are required for a successful post-surgery procedure. Biomechanical evaluations on the medical implants could be performed by utilising computer and engineering technology. One of them is in silico studies using finite element method that could be simulated in high-performance computer. However, various assumptions are required in computer simulation,such as the constraints on data input and computer resources. This review paper discusses current approaches of constructing a finite element model of human bone with specific material properties for upper limb such as the shoulder joint, humerus, elbow joint, radius and wrist joint. Previous related literatures were reviewed from selected keywords and search engines. To narrow the literature search in this study, inclusion and exclusion criteria of the literature searching were applied. We looked at the current level of knowledge in this field and offered recommendations for future study. In conclusion, studies from previous literature have demonstrated several ways for developing mathematical models and simulating medical implants.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ramlee, M. H., Al-Tam, B. Y., Abdul Wahab, A., Gan, H. S., & Abdullah, A. H. (2025). A Review on Finite Element Modelling and Simulation for Upper Limb of Human Bone and Implant . Malaysian Journal of Medicine and Health Sciences, 19(1), 325–339. https://doi.org/10.47836/mjmhs.19.1.41
Section
Review Article

References

Curtis EM, van der Velde R, Moon RJ, van den Bergh JP, Geusens P, de Vries F, et al. Epidemiology of fractures in the United Kingdom 1988-2012: Variation with age, sex, geography, ethnicity and socioeconomic status. Bone. 2016;87:19-26. doi:10.1016/j.bone.2016.03.006

Milenkovic S, Mitkovic M, Bumbasirevic M. External fixation of open subtalar dislocation. Injury. 2006;37(9):909-13. doi: 10.1016/j.injury.2006.02.051.

Sherekar R, Ganjare A, Pawar A. Finite Element Analysis of Human Clavicle Bone: A Methodology Review. American Journal of Mechanical Engineering and Automation. 2014;1(5):54-9. Retrieved from http://www.openscienceonline.com/journal/ajmea

Ramlee MH, Abdul Kadir MR, Murali MR, Kamarul T. Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation—A finite element analysis. Medical Engineering & Physics. 2014;36(10):135866. doi:10.1016/j.medengphy.2014.07.001.

Kapukaya A, Subasi M, Arslan H, Tuzuner T. Non reducible, open tibial plafond fractures treated with a circular external fixator (is the current classification sufficient for identifying fractures in this area?). Injury. 2005;36(12):1480-7. doi: 10.1016/j.injury.2005.05.005

Inzana JA, Varga P, Windolf M. Implicit modeling of screw threads for efficient finite element analysis of complex bone-implant systems. Journal of Biomechanics. 2016;49(9):1836-44. doi: 10.1016/j.jbiomech.2016.04.021

Driscoll M. The Impact of the Finite Element Method on Medical Device Design. Journal of Medical and Biological Engineering. 2019;39(2):1712. doi: 10.1007/s40846-018-0428-4

Choi AH, Conway RC, Ben-Nissan B. Finite element modeling and analysis in nanomedicine and dentistry. Nanomedicine. 2014;9(11):168195. doi: 10.2217/nnm.14.75

Dawson JM, Khmelniker BV, McAndrew MP. Analysis of the structural behavior of the pelvis during lateral impact using the finite element method. Accident Analysis & Prevention. 1999;31(1):109-19. doi: 4575(98)00052-910.1016/S0001

Kaku N, Tsumura H, Taira H, Sawatari T, Torisu T. Biomechanical study of load transfer of the pubic ramus due to pelvic inclination after hip joint surgery using a three-dimensional finite element model. Journal of Orthopaedic Science. 2004;9(3):264-9. doi: 10.1007/s00776-004-07729.

Dalstra M, Huiskes R, van Erning L. Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone. Journal of Biomechanical Engineering. 1995;117(3):272-8. doi: 10.1115/1.2794181.

Spears IR, Pfleiderer M, Schneider E, Hille E, Morlock MM. The effect of interfacial parameters on cup–bone relative micromotions: A finite element investigation. Journal of Biomechanics. 2001;34(1):113-20. doi: 10.1016/s00219290(00)00112-3.

Thompson MS, Northmore-Ball MD, Tanner KE. Effects of acetabular resurfacing component material and fixation on the strain distribution in the pelvis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2002;216(4):237-45. doi: 10.1243/09544110260138727.

Schultze C, Klüss D, Martin H, Hingst V, Mittelmeier W, Schmitz K-P, et al. [Finite element analysis of a cemented ceramic femoral component for the assembly situation in total knee arthroplasty]. Biomed Tech (Berl). 2007;52(4):301-7. doi: 10.1515/BMT.2007.051.

Bachtar F, Chen X, Hisada T. Finite element contact analysis of the hip joint. Medical and Biological Engineering and Computing. 2006;44(8):643-51. doi: 10.1007/s11517-006-0074-9 16. Kluess D, Martin H, Mittelmeier W, Schmitz K-P, Bader R. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement. Medical Engineering & Physics. 2007;29(4):465-71. doi: 10.1016/j.medengphy.2006.07.001

Dalstra M, Huiskes R. Load transfer across the pelvic bone. Journal of Biomechanics. 1995;28(6):71524. doi: 10.1016/0021-9290(94)00125-n.

Manley MT, Ong KL, Kurtz SM. The Potential for Bone Loss in Acetabular Structures Following THA. Clinical Orthopaedics and Related Research®. 2006;453. doi: 10.1097/01.blo.0000238855.54239.fd.

Oki H, Ando M, Omori H, Okumura Y, Negoro K, Uchida K, et al. Relation Between Vertical Orientation and Stability of Acetabular Component in the Dysplastic Hip Simulated by Nonlinear Three-dimensional Finite Element Method. Artificial Organs. 2004;28(11):1050-4. doi: 10.1111/j.1525-1594.2004.00017.x.

Anderson AE, Peters CL, Tuttle BD, Weiss JA. Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies. Journal of Biomechanical Engineering. 2005;127(3):364-73. doi: 10.1115/1.1894148.

Garcı´a JM, Doblare´ M, Seral B, Seral F, Palanca D, Gracia L. Three-Dimensional Finite Element Analysis of Several Internal and External Pelvis Fixations. Journal of Biomechanical Engineering. 2000;122(5):516-22. doi: 10.1115/1.1289995.

Kluess D, Wieding J, Scouffrant R, Mittelmeier W, Bader R. Finite Element Analysis in Orthopaedic Biomechanics. InTech. 2010:151-70. doi: 10.5772/ intechopen.83980

Xu G-m, Liang Z-y, Li W, Yang Z-z, Chen Z-b, Zhang J. Finite Element Analysis of Insertion Angle of Absorbable Screws for the Fixation of Radial Head Fractures. Orthopaedic Surgery. 2020;12(6):1710-7. doi: 10.1111/os.12797.

Mehboob H, Chang S-H. Evaluation of healing performance of biodegradable composite bone plates for a simulated fractured tibia model by finite element analysis. Composite Structures. 2014;111:193-204. doi: 10.1016/j.compstruct.2013.12.013

Halloran JP, Petrella AJ, Rullkoetter PJ. Explicit finite element modeling of total knee replacement mechanics. Journal of Biomechanics. 2005;38(2):323-31. doi: 10.1016/j.jbiomech.2004.02.046.

Cody DD, Hou FJ, Divine GW, Fyhrie DP. Short Term In Vivo Precision of Proximal Femoral Finite Element Modeling. Annals of Biomedical Engineering. 2000;28(4):408-14. doi: 10.1114/1.278.

Raja Izaham RMA, Abdul Kadir MR, Abdul Rashid AH, Hossain MG, Kamarul T. Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury. 2012;43(6):898-902. doi: 10.1016/j.injury.2011.12.006.

Tuncer M, Cobb JP, Hansen UN, Amis AA. Validation of multiple subject-specific finite element models of unicompartmental knee replacement. Medical Engineering & Physics. 2013;35(10):1457-64. doi: 10.1016/j.medengphy.2013.03.020

Zhao X, Chosa E, Yamako G, Watanabe S, Deng G, Totoribe K. Effect of Acetabular Reinforcement Ring With Hook for Acetabular Dysplasia Clarified by Three-Dimensional Finite Element Analysis. The Journal of Arthroplasty. 2013;28(10):1765-9. doi: 10.1016/j.arth.2013.07.026

MR AK. Computational biomechanics of the hip joint. Berlin: Springer. 2014. doi: 10.1007/978-364238777-7

Terrier A, Larrea X, Guerdat J, Crevoisier X. Development and experimental validation of a finite element model of total ankle replacement. Journal of Biomechanics. 2014;47(3):742-5. doi: 10.1016/j.jbiomech.2013.12.022.

Hopkins AR, New AM, Rodriguez-y-Baena F, Taylor M. Finite element analysis of unicompartmental knee arthroplasty. Medical Engineering & Physics. 2010;32(1):14-21. doi: 10.1016/j. medengphy.2009.10.002

Wang Y, Wong DW, Zhang M. Computational Models of the Foot and Ankle for Pathomechanics and Clinical Applications: A Review. Ann Biomed Eng. 2016;44(1):213-21. doi: 10.1007/s10439015-1359-7.

Ramlee MH, Kadir MRA, Harun H. Three Dimensional Modelling and Finite Element Analysis of an Ankle External Fixator. Advanced Materials Research. 2014;845:183-8. doi: 10.4028/www.scientific.net/AMR.845.183

Roland M, Tjardes T, Otchwemah R, Bouillon B, Diebels S. An optimization algorithm for individualized biomechanical analysis and simulation of tibia fractures. Journal of Biomechanics. 2015;48(6):1119-24 doi: 10.1016/j.jbiomech.2015.01.015

Abdullah AH, Todo MN, Nakashima Y. Stress and damage formation analysis in hip arthroplasties using CT-based finite element method. Journal of Engineering and Applied Sciences, 12(10), 27152719. 2017. doi: 10.3923/jeasci.2017.2715.2719 37. Ramlee MH, Kadir MRA, Harun H. Three dimensional modeling and analysis of a human ankle joint. 2013 IEEE Student Conference on Research and Developement; 2013 16-17 Dec. 2013. doi: 10.1109/SCOReD.2013.7002545

MUNCKHOF SVD, NIKOOYAN AA, ZADPOOR AA. ASSESSMENT OF OSTEOPOROTIC FEMORAL FRACTURE RISK: FINITE ELEMENT METHOD AS A POTENTIAL REPLACEMENT FOR CURRENT CLINICAL TECHNIQUES. Journal of Mechanics in Medicine and Biology. 2015;15(03):1530003. doi: 10.1142/S0219519415300033

Qiu T-X, Teo E-C, Yan Y-B, Lei W. Finite element modeling of a 3D coupled foot–boot model. Medical Engineering & Physics. 2011;33(10):122833. doi: 10.1016/j.medengphy.2011.05.012

Radcliffe IAJ, Taylor M. Investigation into the affect of cementing techniques on load transfer in the resurfaced femoral head: A multi-femur finite element analysis. Clinical Biomechanics. 2007;22(4):422-30. doi: 10.1016/j.clinbiomech.2006.12.001

Wittek A, Grosland NM, Joldes GR, Magnotta V, Miller K. From Finite Element Meshes to Clouds of Points: A Review of Methods for Generation of Computational Biomechanics Models for Patient Specific Applications. Ann Biomed Eng. 2016;44(1):3-15. doi: 10.1007/s10439-015-14692.

Izmin NAN, Todo M, AH A. Prediction of bone damage formation in resurfacing hip arthroplasty. International Journal of Engineering and Advanced Technology. 2019. doi: 10.1016/j.medengphy.2017.03.006

Yosibash Z, Trabelsi N, Milgrom C. Reliable simulations of the human proximal femur by high order finite element analysis validated by experimental observations. Journal of Biomechanics. 2007;40(16):3688-99. doi: 10.1016/j.jbiomech.2007.06.017.

Abdullah AH, Todo M, Nakashima Y. Prediction of damage formation in hip arthroplasties by finite element analysis using computed tomography images. Medical Engineering & Physics. 2017;44:815. doi: 10.1016/j.medengphy.2017.03.006

Wong DW, Niu W, Wang Y, Zhang M. Finite Element Analysis of Foot and Ankle Impact Injury: Risk Evaluation of Calcaneus and Talus Fracture. PLoS One. 2016;11(4):e0154435. doi: 10.1371/journal.pone.0154435

Ramlee MH, Abdul Kadir MR, Murali MR, Kamarul T. Finite element analysis of three commonly used external fixation devices for treating Type III pilon fractures. Medical Engineering & Physics. 2014;36(10):1322-30. doi: 10.1016/j.medengphy.2014.05.015.

Miyoshi S, Takahashi T, Ohtani M, Yamamoto H, Kameyama K. Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model. Clinical Biomechanics. 2002;17(7):521-5. doi: 10.1016/s02680033(02)00064-5.

Completo A, Rego A, Fonseca F, Ramos A, Relvas C, Simões JA. Biomechanical evaluation of proximal tibia behaviour with the use of femoral stems in revision TKA: An in vitro and finite element analysis. Clinical Biomechanics. 2010;25(2):15965. doi: 10.1016/j.clinbiomech.2009.10.011.

Dai X-Q, Li Y, Zhang M, Cheung JT-M. Effect of sock on biomechanical responses of foot during walking. Clinical Biomechanics. 2006;21(3):31421. doi: 10.1016/j.clinbiomech.2005.10.002.

Wang CJ, Yettram AL, Yao MS, Procter P. Finite element analysis of a Gamma nail within a fractured femur. Medical Engineering & Physics. 1998;20(9):677-83. doi: 10.1016/s13504533(98)00079-4.

Jay Elliot B, Gundapaneni D, Goswami T. Finite element analysis of stress and wear characterization in total ankle replacements. Journal of the Mechanical Behavior of Biomedical Materials. 2014;34:134-45. doi: 10.1016/j.jmbbm.2014.01.020.

Dopico-González C, New AM, Browne M. Probabilistic finite element analysis of the uncemented hip replacement—effect of femur characteristics and implant design geometry. Journal of Biomechanics. 2010;43(3):512-20. doi: 10.1016/j.jbiomech.2009.09.039

Liu X, Zhang M. Redistribution of knee stress using laterally wedged insole intervention: Finite element analysis of knee–ankle–foot complex. Clinical Biomechanics. 2013;28(1):61-7. doi: 10.1016/j.clinbiomech.2012.10.004.

Viceconti M, Bellingeri L, Cristofolini L, Toni A. A comparative study on different methods of automatic mesh generation of human femurs. Medical Engineering & Physics. 1998;20(1):1-10. doi: 10.1016/s1350-4533(97)00049-0.

Innocenti B, Pianigiani S, Ramundo G, Thienpont E. Biomechanical Effects of Different Varus and Valgus Alignments in Medial Unicompartmental Knee Arthroplasty. The Journal of Arthroplasty. 2016;31(12):2685-91. doi: 10.1016/j.arth.2016.07.006.

Bah MT, Nair PB, Browne M. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements. Medical Engineering & Physics. 2009;31(10):1235-43. doi: 10.1016/j.medengphy.2009.08.001.

Hölzer A, Schröder C, Woiczinski M, Sadoghi P, Scharpf A, Heimkes B, et al. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: A straightforward method and convergence study. Computer Methods and Programs in Biomedicine. 2013;110(1):82-8. doi: 10.1016/j.cmpb.2012.09.010.

Conlisk N, Howie CR, Pankaj P. An efficient method to capture the impact of total knee replacement on a variety of simulated patient types: A finite element study. Medical Engineering & Physics. 2016;38(9):959-68. doi: 10.1016/j.medengphy.2016.06.014

Ma C-H, Wu C-H, Tu Y-K, Lin T-S. Metaphyseal locking plate as a definitive external fixator for treating open tibial fractures—Clinical outcome and a finite element study. Injury. 2013;44(8):1097101. doi: 10.1016/j.injury.2013.04.023.

Wang Y, Wong DW-C, Zhang M. Computational Models of the Foot and Ankle for Pathomechanics and Clinical Applications: A Review. Annals of Biomedical Engineering. 2016;44(1):213-21. doi: 10.1007/s10439-015-1359-7.

Goebel P, Kluess D, Wieding J, Souffrant R, Heyer H, Sander M, et al. The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis. J Orthop Sci. 2013;18(2):264-70. doi: 10.1007/s00776-0120340-7

Pérez MA, Palacios J. Comparative Finite Element Analysis of the Debonding Process in Different Concepts of Cemented Hip Implants. Annals of Biomedical Engineering. 2010;38(6):2093-106. doi: 10.1007/s10439-010-9996-3

Clary CW, Fitzpatrick CK, Maletsky LP, Rullkoetter PJ. The influence of total knee arthroplasty geometry on mid-flexion stability: An experimental and finite element study. Journal of Biomechanics. 2013;46(7):1351-7. doi: 10.1016/j. jbiomech.2013.01.025

Kaman MO, Celik N, Karakuzu S. Numerical Stress Analysis of the Plates Used to Treat the Tibia Bone Fracture. Journal of Applied Mathematics and Physics. 2014;Vol.02No.06:6. doi: 10.4236/jamp.2014.26036

Sawatari T, Tsumura H, Iesaka K, Furushiro Y, Torisu T. Three-dimensional finite element analysis of unicompartmental knee arthroplasty–the influence of tibial component inclination. Journal of Orthopaedic Research. 2005;23(3):549-54. doi: 10.1016/j.orthres.2004.06.007

Abdul-Kadir MR, Hansen U, Klabunde R, Lucas D, Amis A. Finite element modelling of primary hip stem stability: The effect of interference fit. Journal of Biomechanics. 2008;41(3):587-94. doi: 10.1016/j.jbiomech.2007.10.009

Maurel N, Diop A, Grimberg J, Elise S. In vitro biomechanical analysis of glenoıds before and after implantation of prosthetic components. Journal of Biomechanics. 2002;35(8):1071-80. doi: 10.1016/s0021-9290(02)00065-9.

Diop A, Maurel N, Grimberg J, Gagey O. Influence of glenohumeral mismatch on bone strains and implant displacements in implanted glenoïds. An in vitro experimental study on cadaveric scapulae. Journal of Biomechanics. 2006;39(16):3026-35. doi: 10.1016/j.jbiomech.2005.10.015

Pomwenger W, Entacher K, Resch H, Schuller Götzburg P. Multi-patient finite element simulation of keeled versus pegged glenoid implant designs in shoulder arthroplasty. Medical & Biological Engineering & Computing. 2015;53(9):781-90. doi: 10.1007/s11517-015-1286-7.

Cheung JT-M, Zhang M, An K-N. Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clinical Biomechanics. 2006;21(2):194-203. doi: 10.1016/j.clinbiomech.2005.09.016.

Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS. Experimental Validation of a Finite Element Model of a Human Cadaveric Tibia. Journal of Biomechanical Engineering. 2008;130(3). doi: 10.1115/1.2913335.

Taddei F, Cristofolini L, Martelli S, Gill HS, Viceconti M. Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy. Journal of Biomechanics.2006;39(13):2457-67. doi: 10.1016/j.jbiomech.2005.07.018

Rogge RD, Adams BD, Goel VK. An analysis of bone stresses and fixation stability using a finite element model of simulated distal radius fractures. The Journal of Hand Surgery. 2002;27(1):86-92. doi: 10.1053/jhsu.2002.29485.

Pistoia W, van Rietbergen B, Lochmüller EM, Lill

CA, Eckstein F, Rüegsegger P. Image-Based Micro Finite-Element Modeling for Improved Distal Radius Strength Diagnosis: Moving From “Bench” to “Bedside”. Journal of Clinical Densitometry. 2004;7(2):153-60. doi: 10.1385/jcd:7:2:153.

Iesaka K, Kummer FJ, Di Cesare PE. Stress Risers

Between Two Ipsilateral Intramedullary Stems: A Finite-Element and Biomechanical Analysis. The Journal of Arthroplasty. 2005;20(3):386-91. doi: 10.1016/j.arth.2004.05.002.

Chen Y-N, Lee P-Y, Chang C-H, Chang C-W, Ho Y-H, Li C-T, et al. Computational comparison of tibial diaphyseal fractures fixed with various degrees of prebending of titanium elastic nails and with and without end caps. Injury. 2016;47(10):233946. doi: 10.1016/j.injury.2016.07.001.

Walch G, Young AA, Melis B, Gazielly D, Loew M, Boileau P. Results of a convex-back cemented keeled glenoid component in primary osteoarthritis: multicenter study with a follow up greater than 5 years. Journal of Shoulder and Elbow Surgery. 2011;20(3):385-94. doi: 10.1016/j.jse.2010.07.011

Büchler P, Ramaniraka NA, Rakotomanana LR, Iannotti JP, Farron A. A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints. Clinical Biomechanics. 2002;17(9):630-9. doi: 10.1016/s0268-0033(02)00106-7.

Orr TE, Carter DR, Schurman DJ. Stress analyses of glenoid component designs. Clin Orthop Relat Res. 1988(232):217-24. doi: 10.1097/00003086198807000-00029

Stone KD, Grabowski JJ, Cofield RH, Morrey BF, An KN. Stress analyses of glenoid components in total shoulder arthroplasty. Journal of Shoulder and Elbow Surgery. 1999;8(2):151-8. doi: 10.1016/s10582746(99)90009-5.

Murphy LA, Prendergast PJ, Resch H. Structural analysis of an offset-keel design glenoid component compared with a center-keel design. Journal of Shoulder and Elbow Surgery. 2001;10(6):568-79. doi: 10.1067/mse.2001.118630.

Lacroix D, Murphy LA, Prendergast PJ. Three Dimensional Finite Element Analysis of Glenoid Replacement Prostheses: A Comparison of Keeled and Pegged Anchorage Systems. Journal of Biomechanical Engineering. 2000;122(4):430-6. doi: 10.1115/1.1286318.

Aldinger PR, Raiss P, Rickert M, Loew M. Complications in shoulder arthroplasty: an analysis of 485 cases. International Orthopaedics. 2010;34(4):517-24. doi: 10.1007/s00264-0090780-7

Fox TJ, Cil A, Sperling JW, Sanchez-Sotelo J, Schleck CD, Cofield RH. Survival of the glenoid component in shoulder arthroplasty. Journal of Shoulder and Elbow Surgery. 2009;18(6):859-63. doi: 10.1016/j.jse.2008.11.020

Severt R, Thomas BJ, Tsenter MJ, Amstutz HC, Kabo JM. The influence of conformity and constraint on translational forces and frictional torque in total shoulder arthroplasty. Clin Orthop Relat Res. 1993(292):151-8. doi: 10.1097/0000308619930700000019

Anglin C, Wyss UP, Pichora DR. Shoulder prosthesis subluxation: Theory and experiment. Journal of Shoulder and Elbow Surgery. 2000;9(2):104-14. doi: 10.1067/mse.2000.105139

Oosterom R, Herder JL, van der Helm FCT, Święszkowski W, Bersee HEN. Translational stiffness of the replaced shoulder joint. Journal of Biomechanics. 2003;36(12):1897-907. doi: 10.1016/s0021-9290(03)00192-1.

Hopkins AR, Hansen UN, Amis AA, Taylor M, Gronau N, Anglin C. Finite element modelling of glenohumeral kinematics following total

shoulder arthroplasty. Journal of Biomechanics.

;39(13):2476-83. doi: 10.1016/j.

jbiomech.2005.07.031

Antoniac IV, Stoia DI, Ghiban B, Tecu C, Miculescu F, Vigaru C, et al. Failure Analysis of a Humeral Shaft Locking Compression Plate—Surface Investigation and Simulation by Finite Element Method. Materials. 2019;12(7):1128. doi: 10.3390/ma12071128.

Konrad G, Bayer J, Hepp P, Voigt C, Oestern H, Kääb M, et al. Open Reduction and Internal Fixation of Proximal Humeral Fractures with Use of the Locking Proximal Humerus Plate: Surgical Technique. JBJS. 2010;92(Supplement_1_Part_1):85-95. doi: 10.2106/JBJS.I.01462.

Alexandru L, Haragus H, Deleanu B, Timar B, Poenaru DV, Vlad DC. Haematology panel biomarkers for humeral, femoral, and tibial diaphyseal fractures. International Orthopaedics. 2019;43(7):1567-72. doi: 10.1007/s00264-01904305-1.

Pidhorz L. Acute and chronic humeral shaft fractures in adults. Orthopaedics & Traumatology: Surgery & Research. 2015;101(1, Supplement):S41 S9. doi: 10.1016/j.otsr.2014.07.034

Davidovitch R. Shoulder and Elbow Fractures of the Humeral Shaft. Cancer Therapy Advisor. 2017. https://www.cancertherapyadvisor.com/

Kumar V, Rathinam M. Fractures of the shaft of humerus. Orthopaedics and Trauma. 2013;27(6):393402. doi: 10.1016/j.mporth.2013.09.001

Masih C, Francis A, Shriwastava A, Diwedi N, Tiwari P, Nareliya R, et al. Biomechanical evaluation of human humerus and scapula bone: a review. Journal of Biomedical and Bioengineering. 2012;3(1):63-6. Retrieved from http://www.bioinfo.in/contents.php?id=87

Masih C, Nareliya R, Kumar V, editors. Finite Element Application to Human Humerus Bone: A Biomechanical Study2013; India: Springer India. doi: 10.1007/978-81-322-0970-6_12

Calori GM, Colombo M, Bucci MS, Fadigati P, Colombo AIM, Mazzola S, et al. Complications in proximal humeral fractures. Injury. 2016;47:S54-S8. doi: 10.1016/j.injury.2016.07.039

Lungu R, Borgazi E, Lungu M, Popa D, Tutunea D, MX C. New methods for the simulation with finite element of the human elbow. Proceedings of the international conference on circuits, systems, signals. 2010:pp 45–50. Retrieved from https://www.scimagojr.com/journalsearch.php?q=19900191924&tip=sid&clean=0

Lee BP, Adams RA, Morrey BF. Polyethylene Wear After Total Elbow Arthroplasty. JBJS. 2005;87(5):1080-7. doi: 10.2106/JBJS.D.02163.

Banagan KE, Murthi AM. Current concepts in total elbow arthroplasty. Current Opinion in Orthopaedics. 2006;17(4):335-9. doi: 10.1097/01.bco.0000233729.71880.dc

Loebenberg MI, Adams R, O’Driscoll SW, Morrey BF. Impaction Grafting in Revision Total Elbow Arthroplasty. JBJS. 2005;87(1):99-106.doi: 10.2106/JBJS.B.00038

Müller SA, King GJW, Johnson JA. Total Elbow Arthroplasty: Design Considerations. In: King GJW, Rizzo M, editors. Arthroplasty of the Upper Extremity: A Clinical Guide from Elbow to Fingers. Cham: Springer International Publishing; 2021. p. 3-19. doi: 10.1007/978-3-030-68880-6_1

Morrey BF, Askew LJ, Chao EY. A biomechanical study of normal functional elbow motion. J Bone Joint Surg Am. 1981;63(6):872-7. doi: 10.2106/00004623-198163060-00002104. BF M. The elbow and its disorders. Philadelphia: WB Saunders. 2000. doi: 10.1016/S00256196(12)60750-2

Boone DC, Azen SP. Normal range of motion of joints in male subjects. JBJS. 1979;61(5):756-9. doi: 10.2106/00004623-197961050-00017

Tarnita D, Boborelu C, Popa D, Tarnita D-N, editors. Design and Finite Element Analysis of a New Spherical Prosthesis-Elbow Joint Assembly2018; Cham: Springer International Publishing. doi: 10.1007/978-3-319-79111-1_12

TarniŢă D. Wearable sensors used for human gait analysis. Rom J Morphol Embryol. 2016;57(2):37382. Retrieved from https://www.rjme.ro/

TarniŢă D, TarniŢă DN. Experimental measurement of flexion-extension movement in normal and corpse prosthetic elbow joint. Rom J Morphol Embryol. 2016;57(1):145-51. Retrieved from https://www.rjme.ro/

Tarnita D, Popa D, Boborelu C, Dumitru N, Calafeteanu D, Tarnita DN, editors. Experimental Bench Used to Test Human Elbow Endoprosthesis 2015; Cham: Springer International Publishing. doi: 10.1007/978-3-319-09411-3_71

Radakisnin R, Mamat N, Majid MSA, Nasir NFM, editors. A FINITE ELEMENT ANALYSIS OF ELBOW JOINT IN DAILY ACTIVITIES2015. Retrieved from http://www.arpnjournals.com/jeas/

Waters PM, Mintzer CM, Hipp JA, Snyder BD. Noninvasive measurement of distal radius instability. The Journal of Hand Surgery. 1997;22(4):572-9. doi: 10.1016/S0363-5023(97)80111-6.

Winemaker MJ, Chinchalkar S, Richards RS, Johnson JA, Chess DG, King GJW. Load relaxation and forces with activity in hoffman external fixators: A clinical study in patients with Colles’ fractures. The Journal of Hand Surgery. 1998;23(5):926-32. doi: 10.1016/S0363-5023(98)80175-5.

Jupiter JB. Fractures of the distal end of the radius. J Bone Joint Surg Am. 1991;73(3):461-9. doi: 10.2106/00004623-199173030-00019

Graff S, Jupiter J. Fracture of the distal radius: Classification of treatment and indications for external fixation. Injury. 1994;25:SD14-SD25. doi: 10.1016/0020-1383(95)90125-6.

Short WH, Palmer AK, Werner FW, Murphy DJ. A biomechanical study of distal radial fractures. The Journal of Hand Surgery. 1987;12(4):529-34. doi: 10.1016/s0363-5023(87)80202-2.

Pike LM, SW W. Alternatives to bone graft in the treatment of distal radius fractures. Atlas Hand Clin. 1997:2:125–50.

Court-Brown CM, Caesar B. Epidemiology of adult fractures: A review. Injury. 2006;37(8):691-7. doi: 10.1016/j.injury.2006.04.130

Disseldorp DJ, Hannemann PF, Poeze M, Brink PR. Dorsal or Volar Plate Fixation of the Distal Radius: Does the Complication Rate Help Us to Choose? J Wrist Surg. 2016;5(3):202-10. doi: 10.1055/s0036-1571842

Lin C-L, Lin Y-H, Chen AC-Y. Buttressing angle of the double-plating fixation of a distal radius fracture: a finite element study. Medical and Biological Engineering and Computing. 2006;44(8):665-73. doi: 10.1007/s11517-006-0082-9

Liu HC, Jiang J-S, Lin C-L. Biomechanical investigation of a novel hybrid dorsal double plating for distal radius fractures by integrating topology optimization and finite element analysis. Injury. 2020;51(6):1271-80. doi: 10.1016/j.injury.2020.03.011121.

RIIS J,FRUENSGAARD S. Treatment of Unstable Colles’ Fractures by External Fixation. Journal of Hand Surgery. 1989;14(2):145-8. doi: 10.1016/02667681_89_90115-0.

Cooney WP, 3rd, Dobyns JH, Linscheid RL. Complications of Colles’ fractures. J Bone Joint Surg Am. 1980;62(4):613-9. doi: 10.2106/00004623198062040-00016

S. K. Muscle strength. London, United Kingdom: Taylor & Francis Ltd. 2004:p. 224. doi: 10.1201/9780203503591

Brown CJ, Wang CJ, Yettram AL, Procter P. Intramedullary nails with two lag screws. Clinical Biomechanics. 2004;19(5):519-25. doi: 10.1016/j.clinbiomech.2004.01.004.

Lin YH, Lin CL, Kuo HN, Sun MT, ACY C. Biomechanical analysis of volar and dorsal locking plates for fixation in comminuted extra articular articular distal radius fractures: a 3D finite element study. J Med Biol Eng. 2011.doi: 10.5405/jmbe.1003

Carrozzella J, Stern PJ. Treatment of Comminuted Distal Radius Fractures with Pins and Plaster. Hand Clinics. 1988;4(3):391-7. doi: 10.1016/S07490712(21)01156-2

Greatting MD, Bishop AT. Intrafocal (Kapandji) pinning of unstable fractures of the distal radius. Orthop Clin North Am. 1993;24(2):301-7. doi: 10.1016/S0030-5898(21)00018-3

A. RD, P. R. FRACTURES OF THE DISTAL END OF THE RADIUS TREATED BY INTERNAL FIXATION AND EARLY FUNCTION. The Journal of Bone and Joint Surgery British volume. 1996;78-B(4):588-92. doi: 10.1302/0301-620x.78b4.0780588

Naidu SH, Capo JT, Moulton M, Ciccone W, Radin A. Percutaneous pinning of distal radius fractures: A biomechanical study. The Journal of Hand Surgery. 1997;22(2):252-7. doi: 10.1016/S03635023(97)80159-1.

Jones DJ, Henley MB, Schemitsch EH, Tencer AF. A biomechanical comparison of two methods of fixation of fractures of the forearm. J Orthop Trauma. 1995;9(3):198-206. doi: 199506000-00004.10.1097/00005131

Habernek H, Weinstabl R, Fialka C, Schmid L. Unstable distal radius fractures treated by modified Kirschner wire pinning: anatomic considerations, technique, and results. J Trauma. 1994;36(1):83-8. doi: 10.1097/00005373-199401000-00013.

Schuind F, Donkerwolcke M, Burny F. External Fixation of Wrist Fractures. Orthopedics. 1984;7(5):841-4. doi: 10.3928/0147-74471984050109

Berger RA, Crowninshield RD, Flatt AE. The three dimensional rotational behaviors of the carpal bones. Clin Orthop Relat Res. 1982(167):303-10. doi: 10.1097/00003086-198207000-00047

Zhang J, Ebraheim N, Lausé GE, Xiao B, Xu R. A comparison of absorbable screws and metallic plates in treating calcaneal fractures: A prospective randomized trial. Journal of Trauma and Acute Care Surgery. 2012;72(2):E106-E10. doi: 10.1097/ta.0b013e3182231811.

Zhang J, Xiao B, Wu Z. Surgical treatment of calcaneal fractures with bioabsorbable screws. International Orthopaedics. 2011;35(4):529-33. doi: 10.1007/s00264-010-1183-5

Pelto K, Hirvensalo E, Böstman O, Rokkanen P.Treatment of radial head fractures with absorbable polyglycolide pins: a study on the security of the fixation in 38 cases. J Orthop Trauma. 1994;8(2):948. doi: 10.1097/00005131-199404000-00003.

Shi X, Pan T, Wu D, Cai N, Chen R, Li B, et al. Effect of different orientations of screw fixation for radial head fractures: a biomechanical comparison. Journal of Orthopaedic Surgery and Research. 2017;12(1):143. doi: 10.1186/s13018-017-06419.

Stegeman M, Rijnberg WJ, van Loon CJM.Biaxial total wrist arthroplasty in rheumatoid arthritis. Satisfactory functional results. Rheumatology International. 2005;25(3):191-4. doi: 10.1007/s00296-003-0413-1.

Bajuri MN, Abdul Kadir MR, Murali MR, Kamarul T. Biomechanical analysis of the wrist arthroplasty in rheumatoid arthritis: a finite element analysis. Medical & Biological Engineering & Computing. 2013;51(1):175-86. doi: 10.1007/s11517-0120982-9. 140. Bajuri MN, Kadir MRA, Raman MM, Kamarul T. Mechanical and functional assessment of the wrist affected by rheumatoid arthritis: A finite element analysis. Medical Engineering & Physics. 2012;34(9):1294-302. doi: 10.1016/j.medengphy.2011.12.020

McCullough MBA, Adams BD, Grosland NM. THE EFFECT OF ARTICULAR SURFACE SHAPE AND TENDON FORCES OF TOTAL WRIST ARTHROPLASTY SYSTEMS: A FINITE ELEMENT STUDY. Journal of Musculoskeletal Research. 2012;15(04):1250021. doi: 10.1142/S0218957712500212

Mianroodi M, Touchal S. Finite element study of a wrist prosthesis. Journal of Basic Research in Medical Sciences. 2019;6(3):49-55. Retrieved from https://jbrms.medilam.ac.ir/

Trieb K, Hofstätter S. Rheumatoid Arthritis of the Wrist. Techniques in Orthopaedics. 2009;24(1):812. doi:10.1097/BTO.0b013e3181a32a36

Gupta A. Total wrist arthroplasty. Am J Orthop (Belle Mead NJ). 2008;37(8 Suppl 1):12-6. doi: 10.1186/1753-6561-9-S3-A86

Cavaliere CM, Chung KC. Total Wrist Arthroplasty and Total Wrist Arthrodesis in Rheumatoid Arthritis: A Decision Analysis From the Hand Surgeons’ Perspective. The Journal of Hand Surgery. 2008;33(10):1744-55.e2. doi: 10.1016/j.jhsa.2008.06.022.

Herzberg G. Prospective study of a new total wrist arthroplasty: Short term results. Chirurgie de la Main. 2011;30(1):20-5. doi: 10.1016/j.main.2011.01.017

Adams BD. Total wrist arthroplasty for rheumatoid arthritis. International Congress Series. 2006;1295:83-93. doi: 10.1016/j.ics.2006.03.031

Radmer S, Andresen R, Sparmann M. Wrist arthroplasty with a new generation of prostheses in patients with rheumatoid arthritis. The Journal of Hand Surgery. 1999;24(5):935-43. doi: 10.1053/jhsu.1999.0935.

Gislason MK, Nash DH, Nicol A, Kanellopoulos A, Bransby-Zachary M, Hems T, et al. A three dimensional finite element model of maximal grip loading in the human wrist. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2009;223(7):849-61. doi: 10.1243/09544119JEIM527.

Gíslason MK, Stansfield B, Nash DH. Finite element model creation and stability considerations of complex biological articulation: The human wrist joint. Medical Engineering & Physics. 2010;32(5):523-31. doi: 10.1016/j.medengphy.2010.02.015

Carrigan SD, Whiteside RA, Pichora DR, Small CF. Development of a Three-Dimensional Finite Element Model for Carpal Load Transmission in a Static Neutral Posture. Annals of Biomedical Engineering. 2003;31(6):718-25. doi: 10.1114/1.1574027.

Cush JJ, Lipsky PE. Cellular basis for rheumatoid inflammation. Clin Orthop Relat Res. 1991(265):922. doi: 10.1097/00003086-199104000-00003

Ramlee MH, Gan KB. Function and biomechanics of upper limb in post-stroke patients - a systematic review. Journal of Mechanics in Medicine and Biology. 2017;17(6):1750099. doi: 10.1142/S0219519417500993

Zainal Abidin NA, Abdul Kadir MR, Ramlee MH. Three-dimensional finite element modelling and analysis of human knee joint - Model verification. Journal of Physics: Conference Series. 2019;1372(1):012608. doi: 10.1088/17426596/1372/1/012068

Clavert P, Zerah M, Krier J, Mille P, Kempf JF, Kahn JL. Finite element analysis of the strain distribution in the humeral head tubercles during abduction: comparison of young and osteoporotic bone. Surgical and Radiologic Anatomy. 2006;28(6):5817. doi: 10.1007/s00276-006-0140-x.

Zainal Abidin NA, Abdul Kadir MR, Ramlee MH. Biomechanical effects of different lengths of cross pins in anterior cruciate ligament reconstruction: a finite element analysis. Journal of Mechanics in Medicine and Biology. 2020;20(7):2050047. doi: 10.1142/S0219519420500475

Abd Aziz AM, Gan HS, Nasution AK, Abdul Kadir MR, Ramlee MH. Development and verification of three-dimensional model of femoral bone: finite element analysis. Journal of Physics: Conference Series. 2019;1372(1):012014. doi: 10.1088/17426596/1372/1/012014