Validated High-Resolution Melting Assays for Efficient Screening of DENND1A, LHCGR, FSHR, THADA, and CYP17A1 Polycystic Ovary Syndrome-Associated Gene Polymorphisms

Main Article Content

Mariam Elbadie
Habibah Abdul Hamid
Zalinah Ahmad
King-Hwa Ling

Abstract

Introduction: High-resolution melting (HRM) analysis is a fast, sensitive, cost-effective, post-qPCR mutation detection method. HRM analysis represents an advancement over previous DNA dissociation studies, serving to classify DNA samples based on their dissociation behaviour as they melt from dsDNA to ssDNA, utilising special dsDNA saturating fluorescent dyes such as LCGREEN, EVaGreen, and ResoLight. This study aimed to design and validate high-resolution melting assays for the screening of six polycystic ovary syndrome (PCOS) associated single-nucleotide polymorphisms, namely DENND1A (DENN/MADD domain-containing 1A) rs2479106 and rs10986105, THADA (Thyroid Adenoma-Associated Protein) rs13429458, LHCGR (Luteinising Hormone/Choriogonadotropin Receptor) rs13405728, FSHR (Follicle-Stimulating Hormone Receptor) rs6166, and CYP17A1 (Cytochrome P450 17A1)  rs743572. Materials and Methods: A total of forty-five peripheral blood samples obtained from the infertility clinic at Hospital Sultan Abdul Aziz Shah were collected for gDNA extraction, primers were designed, and optimised for HRM analysis to be conducted on the Light cycler release 1.5.1.62SP3 software. Results: The HRM-predicted genotypes of these target SNPs in all gDNA samples were 100% consistent with Sanger DNA sequencing results, illustrating the accuracy and efficiency of this method for high-throughput SNP genotyping. Conclusion: HRM is an efficient technique for rapidly and effectively screening specific SNPs across a large-scale population study.

Downloads

Download data is not yet available.

Article Details

How to Cite
Elbadie, M., Abdul Hamid, H., Ahmad, Z., & Ling, K.-H. (2025). Validated High-Resolution Melting Assays for Efficient Screening of DENND1A, LHCGR, FSHR, THADA, and CYP17A1 Polycystic Ovary Syndrome-Associated Gene Polymorphisms. Malaysian Journal of Medicine and Health Sciences, 21(6), 945.1 – 945.9. https://doi.org/10.47836/mjmhs.v21.i6.945
Section
Original Articles

References

Hiam D, Moreno-Asso A, Teede HJ, Laven JSE, Stepto NK, Moran LJ, et al. The genetics of polycystic ovary syndrome: An overview of candidate gene systematic reviews and genome-wide association studies. J Clin Med. 2019;8(10). doi: 10.3390/jcm8101606.

Dashti S, Latiff LA, Hamid HA, Saini SM, Bakar ASA, Sabri NAIB, et al. Prevalence of Polycystic Ovary Syndrome among Malaysian Female University Staff. Journal of Midwifery and Reproductive Health. 2019;7:1567–1575. doi: 10.22038/jmrh.2018.30370.1329.

De Leo V, Musacchio MC, Cappelli V, Massaro MG, Morgante G, Petraglia F. Genetic, hormonal and metabolic aspects of PCOS: An update. Reproductive Biology and Endocrinology. 2016;14(1). doi: 10.1186/s12958-016-0173-x.

Jones MR, Goodarzi MO. Genetic determinants of polycystic ovary syndrome: progress and future directions. Fertil Steril. 2016;106(1):25–32. doi: 10.1016/j.fertnstert.2016.04.040.

Khan MJ, Ullah A, Basit S. Genetic basis of polycystic ovary syndrome (PCOS): Current perspectives. Application of Clinical Genetics. 2019;12:249–60. doi: 10.2147/TACG.S200341.

Alarcón-Granados MC, Moreno-Ortíz H, Esteban-Pérez CI, Ferrebuz-Cardozo A, Camargo-Villalba GE, Forero-Castro M. Assessment of THADA gene polymorphisms in a sample of Colombian women with polycystic ovary syndrome: A pilot study. Heliyon. 2022;8(6). doi: 10.1016/j.heliyon.2022.e09673.

Zhao H, Lv Y, Li L, Chen Z-J. Genetic Studies on Polycystic Ovary Syndrome. Best Pract Res Clin Obstet Gynaecol . 2016;37:56–65. doi: 10.1016/j.bpobgyn.2016.04.002

Kulasekaran G, Nossova N, Marat AL, Lund I, Cremer C, Ioannou MS, et al. Phosphorylation-dependent regulation of connecdenn/DENND1 guanine nucleotide exchange factors. Journal of Biological Chemistry. 2015;290:17999–8008. doi: 10.1074/jbc.M115.636712.

McAllister JM, Legro RS, Modi BP, Strauss JF. Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends in Endocrinology & Metabolism. 2015;26:118–24. doi: 10.1016/J.TEM.2014.12.004.

Alizzi FJ, Kokaz HT, Al-Mayah QS. Dennd1a and thada gene polymorphism among iraqi women with polycystic ovary syndrome. International Journal of Women’s Health and Reproduction Sciences. 2020;8:265–71. doi: 10.15296/ijwhr.2020.43.

Wan P, Meng L, Huang C, Dai B, Jin Y, Chai L, et al. Replication study and meta-analysis of selected genetic variants and polycystic ovary syndrome susceptibility in Asian population. J Assist Reprod Genet. 2021;38:2781–9. doi: 10.1007/s10815-021-02291-1.

Welt CK, Styrkarsdottir U, Ehrmann DA, Thorleifsson G, Arason G, Gudmundsson JA, et al. Variants in DENND1A Are Associated with Polycystic Ovary Syndrome in Women of European Ancestry. J Clin Endocrinol Metab. 2012;97(7):E1342–E1347. doi: 10.1210/jc.2011-3478.

Hayes MG, Urbanek M, Ehrmann DA, Armstrong LL, Lee JY, Sisk R, et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat Commun. 2015;6. doi: 10.1038/ncomms8502.

Chaudhary H, Patel J, Jain NK, Joshi R. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. J Ovarian Res. 2021;14(1). doi: 10.1186/s13048-021-00879-w.

Bhartiya D, Patel H. An overview of FSH-FSHR biology and explaining the existing conundrums. J Ovarian Res. 2021;14(1). doi: 10.1186/s13048-021-00880-3.

Kim JJ, Choi YM, Hong MA, Chae SJ, Hwang K, Yoon SH, et al. FSH receptor gene p. Thr307Ala and p. Asn680Ser polymorphisms are associated with the risk of polycystic ovary syndrome. J Assist Reprod Genet. 2017;34:1087–93. doi: 10.1007/s10815-017-0953-z.

Dadachanji R, Sawant D, Patil A, Mukherjee S. Replication study of THADA rs13429458 variant with PCOS susceptibility and its related traits in Indian women. Gynecological Endocrinology. 2021;37:716–20. doi: 10.1080/09513590.2021.1906854.

Kaur R, Kaur T, Kaur A. Genetic association study from North India to analyze association of CYP19A1 and CYP17A1 with polycystic ovary syndrome. J Assist Reprod Genet. 2018;35:1123–9. doi: 10.1007/s10815-018-1162-0.

Munawar Lone N, Babar S, Sultan S, Malik S, Nazeer K, Riaz S. Association of the CYP17 and CYP19 gene polymorphisms in women with polycystic ovary syndrome from Punjab, Pakistan. Gynecological Endocrinology. 2021;37:456–61. doi: 10.1080/09513590.2020.1822803.

Ririe KM, Rasmussen RP, Wittwer CT. Product Differentiation by Analysis of DNA Melting Curves during the Polymerase Chain Reaction. Anal Biochem 1997;245:154–60. doi: 10.1006/abio.1996.9916.

Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-Resolution Genotyping by Amplicon Melting Analysis Using LCGreen. Clin Chem . 2003;49:853–60. doi: 10.1373/49.6.853.

Wittwer CT. High-resolution DNA melting analysis: Advancements and limitations. Hum Mutat. 2009;30(6):857–9. doi: 10.1002/humu.20951.

Tong SYC, Giffard PM. Microbiological applications of high-resolution melting analysis. J Clin Microbiol. 2012;50(11):3418–21. doi: 10.1128/JCM.01709-12.

Lipsky RH, Mazzanti CM, Rudolph JG, Xu K, Vyas G, Bozak D, et al. DNA Melting Analysis for Detection of Single Nucleotide Polymorphisms. Clin Chem . 2001;47(4):635–44. doi: 10.1093/clinchem/47.4.635.

Elenitoba-Johnson KSJ, Bohling SD. Solution-Based Scanning for Single-Base Alterations Using a Double-Stranded DNA Binding Dye and Fluorescence-Melting Profiles. Am J Pathol . 2001;159(3):845–53. doi: 10.1016/S0002-9440(10)61760-9.

Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT. Amplicon Melting Analysis with Labeled Primers: A Closed-Tube Method for Differentiating Homozygotes and Heterozygotes. Clin Chem . 2003;49(3):396–406. doi: 10.1373/49.3.396.

Vandersteen JG, Bayrak-Toydemir P, Palais RA, Wittwer CT. Identifying common genetic variants by high-resolution melting. Clin Chem. 2007;53(7):1191–8. doi: 10.1373/clinchem.2007.085407.

Li M, Palais RA, Zhou L, Wittwer CT. Quantifying variant differences in DNA melting curves: Effects of length, melting rate, and curve overlay. Anal Biochem. 2017;539:90–5. doi: 10.1016/j.ab.2017.10.015.

Kockum I, Huang J, Stridh P. Overview of Genotyping Technologies and Methods. Curr Protoc. 2023;3(4). doi: 10.1002/cpz1.727.

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15). doi: 10.1093/nar/gks596.

Okonechnikov K, Golosova O, Fursov M, Varlamov A, Vaskin Y, Efremov I, et al. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166–7. doi: 10.1093/bioinformatics/bts091.

Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, et al. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem. 2004;50(7):1156–64. doi: 10.1373/clinchem.2004.032136.

Orita M, Iwahana H, Kanazawat H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms (mobility shift of separated strands/point mutation/riction franment length polymorphism). Proc. Natd. Acad. Sci. 1989;86(8):2766-70. doi: 10.1073/pnas.86.8.2766.

Highsmith WE, Jin Q, Nataraj AJ, O’Connor JM, Burland VD, Baubonis WR, et al. Use of a DNA toolbox for the characterization of mutation scanning methods. I: Construction of the toolbox and evaluation of heteroduplex analysis. Electrophoresis. 1999;20(6):1186–94. doi: 10.1002/(SICI)1522-2683(19990101)20:6<1186::AID-ELPS1186>3.0.CO;2-6.

Li Q, Liu Z, Monroe H, Culiat CT. Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis. 2002;23(10):1499–511. doi: 10.1002/1522-2683(200205)23:10<1499::AID-ELPS1499>3.0.CO;2-X.

Xiao W, Oefner PJ. Denaturing high-performance liquid chromatography: A review. Hum Mutat. 2001;17(6):439–74. doi: 10.1002/humu.1130.

Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem. 2004;50(10):1748–54. doi: 10.1373/clinchem.2003.029751.

Li BS, Wang XY, Ma FL, Jiang B, Song XX, Xu AG. Is High Resolution Melting Analysis (HRMA) accurate for detection of human disease-associated mutations? A meta analysis. PLoS One. 2011;6(12). doi: 10.1371/journal.pone.0028078.

Fitarelli-Kiehl M, Macedo GS, Schlatter RP, Koehler-Santos P, Da Silveira Matte U, Ashton-Prolla P, et al. Comparison of multiple genotyping methods for the identification of the cancer predisposing founder mutation p.R337H in TP53. Genet Mol Biol. 2016;39(2):203–9. doi: 10.1590/1678-4685-GMB-2014-0351.

Erali M, Voelkerding K V., Wittwer CT. High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol. 2008;85(1):50–8. doi: 10.1016/j.yexmp.2008.03.012.

Gundry CN, Dobrowolski SF, Martin YR, Robbins TC, Nay LM, Boyd N, et al. Base-pair neutral homozygotes can be discriminated by calibrated high-resolution melting of small amplicons. Nucleic Acids Res. 2008;36(10):3401–8. doi: 10.1093/nar/gkn204.

Vossen RHAM, Aten E, Roos A, Den Dunnen JT. High-resolution melting analysis (HRMA) - More than just sequence variant screening. Hum Mutat. 2009;30(6):860–6. doi: 10.1002/humu.21019.

Li M, Zhou L, Palais RA, Wittwer CT. Genotyping accuracy of high-resolution DNA melting instruments. Clin Chem. 2014;60(6):864–72. doi: 10.1373/clinchem.2013.220160.

Montgomery J, Wittwer CT, Kent JO, Zhou L. Scanning the cystic fibrosis transmembrane conductance regulator gene using high-resolution DNA melting analysis. Clin Chem. 2007;53(11):1891–8. doi: 10.1373/clinchem.2007.092361.

Martino A, Mancuso T, Rossi AM. Application of high-resolution melting to large-scale, high-throughput SNP genotyping: A comparison with the TaqMan® method. J Biomol Screen. 2010;15(6):623–9. doi: 10.1177/1087057110365900.

Słomka M, Sobalska-Kwapis M, Wachulec M, Bartosz G, Strapagiel D. High resolution melting (HRM) for high-throughput genotyping-limitations and caveats in practical case studies. Int J Mol Sci. 2017;18(11):2316. doi: 10.3390/ijms18112316.

Aswathy N, P R, TMA S, V V, C Y, M P. Advancing livestock and poultry disease diagnosis with high-resolution melt curve analysis. International Journal of Veterinary Science and Research. 2024;10(2):021–8. doi: 10.17352/ijvsr.000146.

Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem. 2004;50(10):1748–54. doi: 10.1373/clinchem.2003.029751.

Tong SYC, Lilliebridge RA, Holt DC, McDonald MI, Currie BJ, Giffard PM. High-resolution melting analysis of the spa locus reveals significant diversity within sequence type 93 methicillin-resistant Staphylococcus aureus from northern Australia. Clinical Microbiology and Infection. 2009;15(12):1126–31. doi: 10.1111/j.1469-0691.2009.02732.x.

Keikha M, Karbalaei M. High resolution melting assay as a reliable method for diagnosing drug-resistant TB cases: a systematic review and meta-analysis. BMC Infect Dis. 2021;21(1):989. doi: 10.1186/s12879-021-06708-1.