Protective Role of Clinacanthus nutans Against Liver Damage in Streptozotocin-induced Diabetic Rats
Main Article Content
Abstract
Introduction: Diabetes mellitus (DM) triggers oxidative stress and damages many organs, including the liver. The development of herbal medicine is an important approach to preventing liver damage due to DM. This study investigated the effects of ethanolic extract of Clinacanthus nutans (EECN) on the liver anti-oxidant status and tissue morphology of diabetic rats. Materials and methods: Five groups of Male Wistar rats were comprised of healthy control rats (Group 1); untreated diabetic control rats (Group 2); diabetic rats given EECN 100 mg/kg BW (Group 3); diabetic rats given EECN 200 mg/kg BW (Group 4); and diabetic rats given EECN 400 mg/kg BW (Group 5). After 28 days of treatment, the rats were terminated. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations were measured from blood serum. Malondialdehyde (MDA) and Superoxide dismutase (SOD) levels were measured from liver tissue homogenates. Liver tissue was stained with Hematoxylin-Eosin and observed with a light microscope. Results: Serum ALT and AST, as well as liver MDA levels, decreased, while liver SOD levels increased in the EECN group compared to untreated diabetic rats. In addition, lower degenerative and necrotic changes in hepatocytes were also observed in the EECN group. Conclusion: EECN protects against liver tissue damage, as evidenced by reduced transaminases, oxidative stress, and degenerative hepatocytes.
Downloads
Article Details
References
Zheng Y, Ley SH, Hu FB. Global etiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14:88–98. doi:10.1038/nrendo.2017.151.
Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocr Connect. 2018;7(1):R38–46. doi:10.1530/EC-17-0347.
American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021. Diabetes Care. 2021;44(1):S15–33. doi:10.2337/dc21-S002.
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional, and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:1–13. doi:10.1016/j.diabres.2021.109119.
Lotfy M, Adeghate J, Kalasz H, Singh J. Chronic complications of diabetes mellitus: A mini-review. Curr Diabetes Rev. 2017;13(1):3–10. doi:10.2174/1573399812666151016101622.
Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. Mechanisms of diabetes-induced liver damage, the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J. 2016;16(2):132–41. doi:10.18295/squmj.2016.16.02.002.
Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, et al. Metabolic spectrum of liver failure in type 2 diabetes and obesity, from NAFLD to NASH to HCC. Int J Mol Sci. 2021;22(9):1–30. doi:10.3390/ijms22094495.
Tomah S, Alkhouri N, Hamdy O. Non-alcoholic fatty liver disease and type 2 diabetes: where do diabetologists stand? Clin Diabetes Endocrinol. 2020;6(9):1–11. doi:10.37897/rmj.2020.s.9.
Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA, et al. The intricate relationship between type 2 Diabetes Mellitus (T2DM), insulin resistance (IR), and Non-alcoholic Fatty Liver Disease (NAFLD). J Diabetes Res. 2020;2020:1–16. doi:10.1155/2020/3920196.
Lucchesi AN, de Freitas NT, Cassettari LL, Marques SFG, Spadella CT. Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: A mechanism for diabetic chronic liver disease. Acta Cir Bras. 2013;28(7):502–8. doi:10.1590/S0102-86502013000700005.
Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of oxidative stress during diabetes mellitus. J Biomarkers. 2013;2013:1–8. doi:10.1155/2013/378790.
Thrasher J. Pharmacologic management of type 2 Diabetes Mellitus: available therapies. Am J Med. 2017;130:S4–17. doi:10.1016/j.amjmed.2017.04.004.
Lipscombe L, Booth G, Butalia S, Dasgupta K, Eurich DT, Goldenberg R, et al. Pharmacologic glycemic management of type 2 Diabetes in adults. Can J Diabetes. 2018;42:S88–103. doi:10.1016/j.jcjd.2017.10.034.
Mousavi M, Abedimanesh N, Mohammadnejad K, Sharini E, Nikkhah M, Eskandari MR, et al. Betanin alleviates oxidative stress through the Nrf2 signaling pathway in the liver of STZ-induced diabetic rats. Mol Biol Rep. 2022;49(10):9345–54. doi:10.1007/s11033-022-07781-8.
Hendarto H, Rifa A, Dwita NC, Nurjannah I, Sari FR, Akbar FN. Short-term effects of Garcinia cambogia on blood glucose and body weight in Streptozocin-induced diabetic rats. Malaysian J Med Health Sci. 2022;18(3):78–81. Available from: https://medic.upm.edu.my/upload/dokumen/2022120209290817_MJMHS_0348.pdf.
Susanti N, Mustika A, Khotib J, Muti'ah R, Rochmanti M. Phytochemical, metabolite compound, and anti-oxidant activity of Clinacanthus nutans leaf extract from Indonesia. Sci Technol Indones. 2023;8(1):38–44. doi:10.26554/sti.2023.8.1.38-44.
Abdul Kadir NAA, Rahmat A, Jaafar HZE. Protective effects of tamarillo (Cyphomandra betacea) extract against high-fat diet induced obesity in Sprague-Dawley rats. J Obes. 2015;2015:1–8. doi:10.1155/2015/846041.
Tabatabaie PS, Yazdanparast R. Teucrium polium extract reverses symptoms of Streptozotocin-induced diabetes in rats via rebalancing the PDX1 and FoxO1 expressions. Biomed Pharmacother. 2017;93:1033–9. doi:10.1016/j.biopha.2017.06.082.
Umar-Imam M, Ismail M, George A, Chinnappan SM, Yusof A. Aqueous leaf extract of Clinacanthus nutans improved metabolic indices and sorbitol-related complications in type II diabetic rats (T2D). Food Sci Nutr. 2019;7(4):1482–93. doi:10.1002/fsn3.988.
Zakaria ZA, Rahim MHA, Mohtarrudin N, Kadir AA, Cheema MS, Ahmad Z, et al. Acute and sub-chronic oral toxicity studies of methanol extract of Clinacanthus nutans in mice. Afr J Tradit Complement Altern Med. 2016;13(2):210–22. doi:10.4314/ajtcam.v13i2.25.
Majd NE, Tabandeh MR, Shahriari A, Soleimani Z. Okra (Abelmoscus esculentus) improved islets structure, and down-regulated PPARs gene expression in pancreas of high-fat diet and Streptozotocin-induced diabetic rats. Cell J. 2018;20(1):31–40. doi:10.22074/cellj.2018.4819.
Bioassay Technology Laboratory. Alanine Aminotransferase (ALT or GPT) Assay Kit.
Bioassay Technology Laboratory. Aspartate Aminotransferase (AST) Assay Kit.
Elabscience. Malondialdehyde (MDA) Colorimetric Assay Kit.
Elabscience. Total Superoxide Dismutase (T-SOD) Activity Assay Kit.
Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res. 2014;2014:1–11. doi:10.1155/2014/137919.
Lucchesi AN, Cassettari LL, Spadella CT. Alloxan-induced diabetes causes morphological and ultrastructural changes in rat liver that resemble the natural history of chronic fatty liver disease in humans. J Diabetes Res. 2015;2015:1–11. doi:10.1155/2015/494578.
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products, can it alleviate diabetes? Biotechnol Adv. 2018;36(6):1738–67. doi:10.1016/j.biotechadv.2017.12.015.
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70. doi:10.1161/CIRCRESAHA.110.223545.
Ohiagu FO, Chikezie PC, Chikezie CM. Pathophysiology of Diabetes Mellitus complications: Metabolic events and control. Biomed Res Ther. 2021;8(3):4243–57. doi:10.15419/bmrat.v8i3.663.
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88. doi:10.1152/physrev.00045.2011.
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signaling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83. doi:10.1038/s41580-020-0230-3.
Ore A, Akinloye OA. Oxidative stress and anti-oxidant biomarkers in clinical and experimental models of Non-Alcoholic Fatty Liver Disease. Medicina. 2019;55(2):1–14. doi:10.3390/medicina55020026.
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med Cell Longev. 2014;2014:1–31. doi:10.1007/978-3-211-33303-7_2.
Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and Diabetes Mellitus. Oxid Med Cell Longev. 2020;2020:1–13. doi:10.1155/2020/8609213.
Sarega N, Imam MU, Ooi DJ, Chan KW, Esa NM, Zawawi N, et al. Phenolic-rich extract from Clinacanthus nutans attenuates hyperlipidemia-associated oxidative stress in rats. Oxid Med Cell Longev. 2016;2016:1–16. doi:10.1155/2016/4137908.
Younus H. Therapeutic potentials of Superoxide Dismutase. Int J Health Sci (Qassim). 2018;12(3):88–93. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969776/.
Ighodaro OM, Akinloye OA. First-line defense anti-oxidants, Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GPX): their fundamental role in the entire anti-oxidant defense grid. Alexandria J Med. 2018;54:287–93. doi:10.1016/j.ajme.2017.09.001.
Freeman D, Starr DA, O'Connor N. Nrf2: the master and captain of beta cell fate. Trends Endocrinol Metab. 2021;32(1):1–22. doi:10.1016/j.tem.2020.11.002.
Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and anti-oxidants: A review. J Biochem Mol Toxicol. 2003;17(1):24–38. doi:10.1002/jbt.10058.
Ajiboye BO, Dada S, Fatoba HO, Lawal OE, Oyeniran OH, Adetuyi OY, et al. Dalbergiella welwitschia (Baker) Baker f. alkaloid-rich extracts attenuate liver damage in streptozotocin-induced diabetic rats. Biomed Pharmacother. 2023;168(October):115681. doi:10.1016/j.biopha.2023.115681.
Contreras-Zentella ML, Hernández-Muñoz R. Is liver enzyme release really associated with cell necrosis induced by oxidant stress? Oxid Med Cell Longev. 2016;2016:1–12. doi:10.1155/2016/3529149.
Harris EH. Elevated liver function tests in type 2 Diabetes. Clin Diabetes. 2005;23(3):115–9. doi:10.2337/diaclin.23.3.115.
Putri VA, Nilasari K, Dentin A, Ismail A, Istiadi H, Sumekar TA, et al. Effect of turmeric powder and extract on the level of triglyceride, total cholesterol, and liver histopathological appearance in alloxan-induced Wistar rats. Malaysian J Med Health Sci. 2020;16:91–6. Available from: https://medic.upm.edu.my/upload/dokumen/2020122115252418_2020_0525.pdf.
Khoo LW, Audrey Kow S, Lee MT, Tan CP, Shaari K, Tham CL, et al. A comprehensive review on phytochemistry and pharmacological activities of Clinacanthus nutans (Burm.f.) Lindau. Evid Based Complement Altern Med. 2018;2018:1–39. doi:10.1155/2018/9276260.
Martins N, Barros L, Ferreira ICFR. In vivo anti-oxidant activity of phenolic compounds: Facts and gaps. Trends Food Sci Technol. 2016;48:1–12. doi:10.1016/j.tifs.2015.11.008.
Salazar-García M, Corona JC. The use of natural compounds as a strategy to counteract oxidative stress in animal models of Diabetes Mellitus. Int J Mol Sci. 2021;22(13):1–13. doi:10.3390/ijms22137009.
Alam MA, Zaidul ISM, Ghafoor K, Sahena F, Hakim M, Rafii MY, et al. In vitro anti-oxidant and α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans. BMC Complement Altern Med. 2017;17(181):1–10. doi:10.1186/s12906-017-1684-5.
Ng KS, Tan SA, Bok CY, Loh KE, Ismail IS, Yue CS, et al. Metabolomic approach for rapid identification of anti-oxidants in Clinacanthus nutans leaves with liver protective potential. Molecules. 2022;27:1–19. doi:10.3390/molecules27123650.