The Effect of Lipopolysaccharide Exposure During Pregnancy on Hepcidin Expression in Female Mice: Involvement of Interleukin-6 and Activin B, Independent of Transforming Growth Factor-β Receptor
Main Article Content
Abstract
Introduction: The expression of hepcidin in hepatocytes is induced by inflammation, primarily mediated by interleukin 6 (IL-6) and activin B. In contrast, hepcidin levels are suppressed during pregnancy via the half-site of the estrogen-responsive element (ERE) on the hepcidin gene promoter. These opposing mechanisms regulate hepcidin in pregnant women with inflammation. However, several studies report no change in hepcidin levels in the blood of pregnant women experiencing inflammation. Therefore, this study investigated the expression of hepcidin in pregnant mice with induced inflammation using LPS injection. Materials and methods: This study involved 26 pregnant mice. The treatment group was injected intraperitoneally with serotype O111:B4 (Sigma-Aldrich, Merck, Singapore), while the control group received Phosphate Buffered Saline (PBS). Serum levels of IL-6, activin B, estradiol, and hepcidin were measured using ELISA. The liver tissues were examined via immunohistochemistry to measure the Transforming Growth Factor-β (TGF-β) receptor. Data were analyzed using an independent t-test. Results: Our results demonstrated that pregnant mice with inflammation had significantly increased IL-6 (P = 0.000) and decreased activin B (P = 0.032) levels, but there were no significant differences in estradiol (P = 0.624), hepcidin (P = 0.607), and TGF-β receptor levels (P = 0.662). Conclusion: Our study showed that inflammation during pregnancy does not impact hepcidin levels. Additionally, we observed a decrease in activin B levels in pregnant mice with inflammation. Conversely, high levels of estradiol during pregnancy may contribute to the suppression of hepcidin synthesis.
Downloads
Article Details
References
Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr An Int Rev J. 2017;8(1):126–36. doi:10.3945/an.116.013961.
Fillebeen C, Wilkinson N, Charlebois E, Katsarou A, Wagner J, Pantopoulos K. Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling. Blood. 2018;132(17):1829–41. doi:10.1182/blood-2018-03-841197.
Kanamori Y, Sugiyama M, Hashimoto O, Murakami M, Matsui T, Funaba M. Regulation of hepcidin expression by inflammation-induced activin B. Sci Rep. 2016;6:38702. doi:10.1038/srep38702.
Wang CY, Babitt JL. Hepcidin regulation in the anemia of inflammation. Curr Opin Hematol. 2016;23(3):189–97. doi:10.1097/MOH.0000000000000236.
Fisher AL, Nemeth E. Iron homeostasis during pregnancy. Am J Clin Nutr. 2017;106:1567S–74S. doi:10.3945/ajcn.117.155812.
Kulik-Rechberger B, Kościesza A, Szponar E, Domosud J. Hepcidin and iron status in pregnant women and full-term newborns in first days of life. Ginekol Pol. 2016;87(4):288–92. doi:10.17772/gp/62202.
Sun P, Zhou Y, Xu S, Wang X, Li X, Li H, et al. Elevated first-trimester hepcidin level is associated with reduced risk of iron deficiency anemia in late pregnancy: a prospective cohort study. Front Nutr. 2023;10:1147114. doi:10.3389/fnut.2023.1147114.
Manolov V, Marinov B, Velizarova M, Atanasova B, Vasilev V, Tzatchev K, et al. Anemia in pregnancy and serum hepcidin levels. Int J Adv Res. 2015;3(1):758–61. Available from: https://www.journalijar.com/article/3585/anemia-in-pregnancy-and-serum-hepcidin-levels.
Vazenmiller D, Ponamaryova O, Muravlyova L, Molotov-Luchanskiy V, Klyuyev D, Bakirova R, et al. The levels of hepcidin and erythropoietin in pregnant women with anemia of various geneses. Open Access Maced J Med Sci. 2018;6(11):2111–4. doi:10.3889/oamjms.2018.471.
Abioye AI, Park S, Ripp K, McDonald EA, Kurtis JD, Wu H, et al. Anemia of inflammation during human pregnancy does not affect newborn iron endowment. J Nutr. 2018;148(3):427–36. doi:10.1093/jn/nxx052.
Flynn AC, Begum S, White SL, Dalrymple K, Gill C, Alwan NA, et al. Relationships between maternal obesity and maternal and neonatal iron status. Nutrients. 2018;10(8):1000. doi:10.3390/nu10081000.
Diallo S, Roberts SA, Gies S, Rouamba T, Swinkels DW, Geurts-Moespot AJ, et al. Malaria early in the first pregnancy: Potential impact of iron status. Clin Nutr. 2020;39(1):204–14. doi:10.1016/j.clnu.2019.01.016.
Yang Q, Jian J, Katz S, Abramson SB, Huang X. 17β-estradiol inhibits iron hormone hepcidin through an estrogen-responsive element half-site. Endocrinology. 2012;153(7):3170–8. doi:10.1210/en.2011-2045.
Katsarou A, Pantopoulos K. Hepcidin therapeutics. Pharmaceuticals. 2018;11(4):127. doi:10.3390/ph11040127.
Cardaropoli S, Todros T, Nuzzo AM, Rolfo A. Maternal serum levels and placental expression of hepcidin in preeclampsia. Pregnancy Hypertens. 2018;11:47–53. doi:10.1016/j.preghy.2017.12.008.
Rahma H, Lumbanraja SN, Lubis Z. Hepcidin and ferritin levels in obese pregnant women and normal body weight before pregnancy. Indones J Med. 2018;3(1):22–6.
Seemann S, Zohles F, Lupp A. Comprehensive comparison of three different animal models for systemic inflammation. J Biomed Sci. 2017;24(1):1–17. doi:10.1186/s12929-017-0370-8.
Yan Y, Cheng L, Chen X, Wang Q, Duan M, Ma J, et al. Estrogen deficiency is associated with hippocampal morphological remodeling of early postmenopausal mice. Oncotarget. 2017;8(13):21892–902. doi:10.18632/oncotarget.15702.
Nowak M, Madej JA, Dziȩgiel P. Intensity of COX2 expression in cells of soft tissue fibrosarcomas in dogs as related to grade of tumour malignancy. Bull Vet Inst Pulawy. 2007;51(2):275–9. Available from: https://www.researchgate.net/publication/289215272.
Liu X, Yin S, Chen Y, Wu Y, Zheng W, Dong H, et al. LPS-induced pro-inflammatory cytokine expression in human airway epithelial cells and macrophages via NF-κB, STAT3 or AP-1 activation. Mol Med Rep. 2018;17(4):5484–91. doi:10.3892/mmr.2018.8542.
Yang HL, Yang TY, Gowrisankar YV, Liao CH, Liao JW, Huang PJ, et al. Suppression of LPS-induced inflammation by chalcone flavokawain A through activation of Nrf2/ARE-mediated antioxidant genes and inhibition of ROS/NFκB signaling pathways in primary splenocytes. Oxid Med Cell Longev. 2020;2020:3476212. doi:10.1155/2020/3476212.
Li J, Qin Y, Chen Y, Zhao P, Liu X, Dong H, et al. Mechanisms of the lipopolysaccharide-induced inflammatory response in alveolar epithelial cell/macrophage co-culture. Exp Ther Med. 2020;20(5):76. doi:10.3892/etm.2020.9204.
Munro P, Dufies O, Rekima S, Loubat A, Duranton C, Boyer L, et al. Modulation of the inflammatory response to LPS by the recruitment and activation of brown and brite adipocytes in mice. Am J Physiol Endocrinol Metab. 2020;319(5):E912–22. doi:10.1152/ajpendo.00279.2020.
Canali S, Core AB, Zumbrennen-Bullough KB, Merkulova M, Wang CY, Schneyer AL, et al. Activin B induces non-canonical SMAD1/5/8 signaling via BMP type I receptors in hepatocytes: Evidence for a role in hepcidin induction by inflammation in male mice. Endocrinology. 2016;157(3):1146–62. doi:10.1210/en.2015-1747.
Uciechowski P, Dempke WCM. Interleukin-6: A masterplayer in the cytokine network. Oncology. 2020;98(3):131–7. doi:10.1159/000505099.
Anadol E, Kanca H, Yar AS, Helvacioğlu F, Menevşe S, Çalgüner E, et al. Prostaglandin F receptor expression in intrauterine tissues of pregnant rats. J Vet Sci. 2014;15(1):125. doi:10.4142/jvs.2014.15.1.125.
Charlebois E, Pantopoulos K. Iron overload inhibits BMP/SMAD and IL-6/STAT3 signaling to hepcidin in cultured hepatocytes. PLoS One. 2021;16(6):e0253475. doi:10.1371/journal.pone.0253475.
Silvestri L, Nai A, Dulja A, Pagani A. Hepcidin and the BMP-SMAD pathway: An unexpected liaison. Vitam Horm. 2019;110:71–99. doi:10.1016/bs.vh.2019.01.004.
Pagani A, Pettinato M, Dulja A, Colucci S, Aghajan M, Furiosi V, et al. Dissecting the mechanisms of hepcidin and BMP-SMAD pathway regulation by FKBP12. Blood. 2021;138(Suppl 1):2008. doi:10.1182/blood-2021-152172.
Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules. 2020;10(3):487. doi:10.3390/biom10030487.
Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti- and pro-inflammatory roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 2009;9(4):447. doi:10.1016/j.coph.2009.04.008.
Anelli GM, Mandò C, Letizia T, Mazzocco MI, Novielli C, Lisso F, et al. Placental ESRRG-CYP19A1 expressions and circulating 17-beta estradiol in IUGR pregnancies. Front Pediatr. 2019;7:154. doi:10.3389/fped.2019.00154.
Hu XL, Shi S, Hou NN, Meng Y, Li M, Liu AX, et al. High maternal serum estradiol in first trimester of multiple pregnancy contributes to small for gestational age via DNMT1-mediated CDKN1C upregulation. Reprod Sci. 2022;29(4):1368. doi:10.1007/s43032-021-00735-8.
Finch CL, Zhang A, Kosikova M, Kawano T, Pasetti MF, Ye Z, et al. Pregnancy level of estradiol attenuated virus-specific humoral immune response in H5N1-infected female mice despite inducing anti-inflammatory protection. Emerg Microbes Infect. 2019;8(1):1146. doi:10.1080/22221751.2019.1648184.
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. In: Advances in Protein Chemistry and Structural Biology. Academic Press; 2019. p. 135–70. doi:10.1016/bs.apcsb.2019.01.001.