Metabolite Alteration Associated with Dabai Pulp Oil Supplementation in Hypercholesterolemic Rats

Main Article Content

Noor Atiqah Aizan Abdul Kadir
Azrina Azlan
Maisarah Abdul Mutalib

Abstract

Introduction: Metabolomic analyses have become paramount in unveiling the therapeutic capacities of bioactive agents. Dabai pulp oil (DPO) has emerged as a prospective agent against hypercholesterolemia. This investigation delineates the metabolic imprints of DPO’s therapeutic actions using ¹H NMR-based urinary metabolomic profiling.
Methods: Male Sprague-Dawley rats were first exposed to a high-cholesterol regimen to simulate hypercholesterolemia. Following this induction, they were transitioned to a DPO-infused diet. The ensuing metabolic variations were tracked using ¹H NMR-based urinary metabolomic analysis. Results: The metabolic landscape displayed discernible shifts post-DPO administration, underlining its therapeutic potential. There was a marked decrement in the concentrations of pivotal metabolites such as creatinine, succinate, pyruvate, acetate, TMAO, and choline (p<0.05). Notably, an augmented taurine concentration after DPO administration spotlighted the oil’s antioxidative and anti-inflammatory prowess (p<0.05). These observations underscore DPO’s proficiency in rectifying metabolic aberrations inherent to hypercholesterolemia, particularly affecting energy transduction and cardiovascular function. Conclusion: This empirical evidence bolsters the notion that DPO harbours potent therapeutic virtues for hypercholesterolemia amelioration. Nevertheless, in-depth explorations are quintessential to decoding its holistic therapeutic pathways, fortifying its role in future targeted interventions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Abdul Kadir, N. A. A., Azlan, A., & Abdul Mutalib, M. (2024). Metabolite Alteration Associated with Dabai Pulp Oil Supplementation in Hypercholesterolemic Rats. Malaysian Journal of Medicine and Health Sciences, 20(3), 142–149. https://doi.org/10.47836/mjmhs.20.3.20
Section
Original Articles

References

Chua HP, Nicholas D, Adros Yahya MN. Physical properties and nutritional values of dabai fruit (Canarium odontophyllum) of different genotypes. J Trop Agric Fd Sc 2015; 43(1):1 –10

Kadir NAAA, Azlan A, Abas F, Ismail IS. Beneficial effect of supercritical carbon dioxide extracted (SC-CO2) Dabai (Canarium odontophyllum) pulp oil in hypercholesterolemia-induced SPF sprague-dawley rats. Nat Prod Commun. 2018;13(12):1583–6. doi: 10.1177/1934578X1801301205

Kadir NAAA, Azlan A, Abas F, Ismail IS. Quality of dabai pulp oil extracted by supercritical carbon dioxide and supplementation in hypercholesterolemic rat—a new alternative fat. Foods. 2021;10(2):262. doi: 10.3390/foods10020262

Cai T, Abel L, Langford O, Monaghan G, Aronson JK, Stevens RJ, et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: Systematic review with pairwise, network, and dose-response meta-analyses. The BMJ. 2021;374:n1537. doi: 10.1136/bmj.n1537.

Alarcon-Barrera JC, Kostidis S, Ondo-Mendez A, Giera M. Recent advances in metabolomics analysis for early drug development. Drug Discov Today. 2022;27(6):1763–73. doi: 10.1016/j.drudis.2022.02.018.

Trifonova OP, Maslov DL, Balashova EE, Lokhov PG. Current State and Future Perspectives on Personalized Metabolomics. Metabolite. 2023;13(1):67. doi: 10.3390/metabo13010067.

Moco S. Studying Metabolism by NMR-Based Metabolomics. Front Mol Biosci. 2022;9:882487. doi: 10.3389/fmolb.2022.882487.

Abu Bakar Sajak A, Mediani A, Maulidiani, Ismail A, Abas F. Metabolite Variation in Lean and Obese Streptozotocin (STZ)-Induced Diabetic Rats via 1H NMR-Based Metabolomics Approach. Appl Biochem Biotechnol. 2017;182(2):653–68. doi: 10.1007/s12010-016-2352-9.

Li SJ, Wang YQ, Zhuang G, Jiang X, Shui D, Wang XY. Overall metabolic network analysis of urine in hyperlipidemic rats treated with Bidens bipinnata L. Biomed Chromatogr. 2023;37(1):e5509. doi: 10.1002/bmc.5509.

Eriksson L, Johansson E, Kettaneh-Wold N, Trygg C, Wikström C, Wold S. Multi- and Megavariate Data Analysis Part I. Basic Principles and Applications. Umetrics AB. 2006.

Li ZY, Ding LL, Li JM, Xu BL, Yang L, Bi KS, et al. 1H-NMR and MS Based Metabolomics Study of the Intervention Effect of Curcumin on Hyperlipidemia Mice Induced by High-Fat Diet. PLoS One. 2015;10(3):e0120950. doi: 10.1371/journal.pone.0120950.

Tan CX, Chong GH, Hamzah H, Ghazali HM. Effect of virgin avocado oil on diet-induced hypercholesterolemia in rats via 1H NMR-based metabolomics approach. Phytotherapy Research. 2018;32(11):2264–74. doi: 10.1002/ptr.6164.

Gomez-Gomez A, Rodríguez-Morató J, Haro N, Marín-Corral J, Masclans JR, Pozo OJ. Untargeted detection of the carbonyl metabolome by chemical derivatization and liquid chromatography-tandem mass spectrometry in precursor ion scan mode:Elucidation of COVID-19 severity biomarkers. Anal Chim Acta. 2022;1196:339405. doi: 10.1016/j.aca.2021.339405.

Jiang CY, Yang KM, Yang L, Miao ZX, Wang YH, Zhu HB. A (1)H NMR-Based Metabonomic Investigation of Time-Related Metabolic Trajectories of the Plasma, Urine and Liver Extracts of Hyperlipidemic Hamsters. PLoS One. 2013;8(6):e66786. doi: 10.1371/journal.pone.0066786.

Duan X, Zhang T, Ou L, Kong Z, Wu W, Zeng G. 1H NMR-based metabolomic study of metabolic profiling for the urine of kidney stone patients. Urolithiasis. 2020;48(1):27–35. doi: 10.1007/s00240-019-01132-2.

Khoo HE, Azlan A, Abd Kadir NAA. Fatty Acid Profile, Phytochemicals, and Other Substances in Canarium odontophyllum Fat Extracted Using Supercritical Carbon Dioxide. Front Chem. 2019;7(5):1–16. doi: 10.3389/fchem.2019.00005.

Roychoudhury S, Sinha B, Choudhury BP, Jha NK, Palit P, Kundu S, et al. Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases. Antioxidants 2021;10(8):1205. doi: 10.3390/antiox10081205.

Abazari MF, Nasiri N, Karizi SZ, Nejati F, Haghi-Aminjan H, Norouzi S, et al. An Updated Review of Various Medicinal Applications of p-Co umaric Acid: From Antioxidative and Anti-Inflammatory Properties to Effects on Cell Cycle and Proliferation. Mini-Reviews in Medicinal Chemistry. 2021;21(15):2187–201. doi: 10.2174/1389557521666210114163024.

Yang L, Li Z, Song Y, Liu Y, Zhao H, Liu Y, et al. Study on urine metabolic profiling and pathogenesis of hyperlipidemia. Clin Chim Acta. 2019;495:365–73. doi: 10.1016/j.cca.2019.05.001.

Wu Q, Zhang H, Dong X, Chen XF, Zhu ZY, Hong ZY, et al. UPLC-Q-TOF/MS based metabolomic profiling of serum and urine of hyperlipidemic rats induced by high fat diet. J Pharm Anal. 2014;4(6):360–7. doi: 10.1016/j.jpha.2014.04.002.

Kim KS, Bang E. Metabolomics profiling of the effects of taurine supplementation on dyslipidemia in a high-fat-diet-induced rat model by 1H NMR spectroscopy. Adv Exp Med Biol. 2017;975:329–36. doi: 10.1007/978-94-024-1079-2_29.

Sajak AAB, Azlan A, Abas F, Hamzah H. The changes in endogenous metabolites in hyperlipidemic rats treated with herbal mixture containing lemon, apple cider, garlic, ginger, and honey. Nutrients. 2021;13(10). doi: 10.3390/nu13103573.

Gu PS, Su KW, Yeh KW, Huang JL, Lo FS, Chiu CY. Metabolomics Analysis Reveals Molecular Signatures of Metabolic Complexity in Children with Hypercholesterolemia. Nutrients. 2023;15(7). doi: 10.3390/nu15071726.

Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell. 2016 Oct 6;167(2):457-470.e13. doi: 10.1016/j.cell.2016.08.064

Randjelovic P, Veljkovic S, Stojiljkovic N, Velickovic L, Sokolovic D, Stoiljkovic M, et al. Protective effect of selenium on gentamicin-induced oxidative stress and nephrotoxicity in rats. Drug Chem Toxicol. 2012;35(2):141–8. doi: 10.3109/01480545.2011.589446.

Puchalska P, Crawford PA. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017;25(2):262-284. doi:10.1016/j.cmet.2016.12.022

Chao J, Huo TI, Cheng HY, Tsai JC, Liao JW, Lee MS, et al. Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice. PLoS One. 2014;9(6). doi: 10.1371/journal.pone.0096969.

Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. doi: 10.1038/nm.3145.

Bennett BJ, Vallim TQDA, Wang Z, Shih DM, Meng Y, Gregory J, et al. Trimethylamine-N-Oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60. doi: 10.1016/j.cmet.2012.12.011

Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. New England Journal of Medicine. 2013;368(17):1575–1584. doi: 10.1056/NEJMoa1109400.

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–65. doi: 10.1038/nature09922.

Xu YJ, Arneja AS, Tappia PS, Dhalla NS. The potential health benefits of Taurine in cardiovascular disease. Exp Clin Cardiol. 2008;13(2):57–65.

Schaffer SW, Ju Jong C, Kc R, Azuma J. Physiological roles of taurine in heart and muscle. J Biomed Sci. 2010;17(SUPPL. 1):1–8. doi: 10.1186/1423-0127-17-S1-S2.

Militante JD, Lombardini JB. Taurine: Evidence of physiological function in the retina. Nutr Neurosci. 2002;5(2):75–90. doi: 10.1080/10284150290018991.

Jong CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids. 2012;42(6):2223–32. doi: 10.1007/s00726-011-0962-7.